

5

REPO: HIGH-LEVEL PERSISTENCE

LAYER FOR CLOJURE

Konrad Grzanek

IT Institute, Academy of Management, Łódź, Poland

kgrzanek@swspiz.pl, kongra@gmail.com

Abstract

One of our previous works was dedicated to creating an effective no-SQL

database solution for Clojure. The solution called Store still missed a high-level

data definition language, the concept of objects, complex types and other

programmers' productivity increasing features of a production-quality database

product. The paper presents a new DSL embedded in Clojure that addresses all

those expectations and works seamlessly with the site functional language.

Keywords: Functional programming, Lisp, Clojure, database

1 Introduction

The advent of functional programming style and growing popularity of

JVM Lisp dialect called Clojure [4, 5] are certain catalysts for the research

and engineering activities in the field of production-ready database products

for the platform. One of the author's previous works was dedicated to creating

an effective no-SQL database solution for this language. The solution pro-

posed by us and described in [2] called Store is:

- a log-file based storage using Berkeley DB Java Edition [6] library

- running in-process with the client application

- possessing a simple Clojure API

Despite it's simplicity and ease of use the Store still misses few important

elements making the database a production-quality solution:

- It does not posses a clear notion of persistent objects, nor an established

representation of object references. All it has is a key to value mapping ab-

straction. In general a store is just an index with associated Store types.

- Besides some basic Store types it lacks a nominal type system [1] that

would make the integration with the host language more natural and that

would increase programmer's productivity.

Repo: High-Level Persistence …

6

- Following the lack of the nominal type system there is an absence of Data

Definition Language (DDL) for Store. This deficiency is especially painful

for the programmers accustomed to traditional relational or object-oriented

(network) database models.

- The mentioned weaknesses effectively prevent using polymorphic proce-

dures based on nominal types and clear object definition, namely multime-

thods [4] in Clojure.

Due to the reasons pointed out above from the beginning of work on Store

it was pretty apparent that the library and storage layer would be only the

most low-level database solution and that the whole product would gain the

expected production-level quality only after adding layers of abstraction

above.

The solution is called a Repo, following the convention of naming the da-

tabase layers used previously by the author ([3]). This paper presents it's most

important features and some internals of the implementation. The article is

organized as follows. In the beginning the Repo's type system will be de-

scribed. Then we will take a look at persistent objects, their representation and

storage. After that the persistent object properties will be discussed together

with their accessors. Finally some derived features will be presented like the

sequential objects and properties scan and various utilities.

2 Type system

The Repo's name based (nominal) type system embraces the basic seman-

tics of traditional object-oriented programming languages. Being and indirec-

tion layer embedded in Clojure, it is dynamically typed like it's host language.

There are two categories of named types in Repo. The first category are

the Store types. These are the most fundamental types that may be treated as

basic or primitive, because they appear in the low level data access layer.

Some of them were described in [2], namely:

Konrad Grzanek

7

:str (java.lang.String) String literal type

:boolean (:bool, java.lang.Boolean) truth/falsity type

:byte (java.lang.Byte)

:short (java.lang.Short)

:char (java.lang.Character)

:int (java.lang.Integer)

:long (java.lang.Long)

Integral types

:float (java.lang.Float)

:double(java.lang.Double)

Floating-point types

:bigint (java.math.BigInteger) Large integral type

:bitset (java.util.BitSet) Bit set type

:timestamp (:time, java.sql.Timestamp) Time value type

:int-pair

:long-pair

Type of pairs (instances of kon-

gra.core.Pair custom utility

class) of primitive integral values

As can be seen the Store types are identified by their names, and they are

essentially Clojure keywords. For the types mentioned above there is also an

alternative identification scheme using Java platform types. According to this

an example store mapping strings to integers may be accessed like:

(store <name> :str :int)

or
(store <name> String Integer)

It is worth mentioning the Store offers a service (actually an API) that al-

lows the users to define their own primitive types. The usage is pretty

straightforward and it boils down to registering a serializer and desertializer

procedures for a specified set of Clojure keywords or Java classes denoting

the primitive type:

(require '[kongra.store :as DB])

(DB/register-converters

 (fn [^RObj obj] ;; serializer

 (Bits/longToBytes

 (.identity (RTools/assertStorable obj))))

 (fn ^RObj [bytes] ;; deserializer

 (R-obj (Bits/getLong bytes 0)))

 :R-obj) ;; new Store type name

Repo: High-Level Persistence …

8

 The listing at the bottom of the previous page shows the way a primitive

Store type of name :R-obj is being defined by using the mentioned extension

mechanism.

Repo introduces the following basic types:

:R-obj A type of the persistent R-object reference. The persistent

objects are the major kinds of data managed by Repo. See the

listing at the bottom of the previous page and Section 3.

:R-type A persistent meta-type for Repo types that are the first-class

objects in our language.

:R-any A type of any object that may undergo serializa-

tion/deserialization to java.lang.String.

:R-seq, :R-list A type of sequences of persistent objects (R-objects)

:R-set A type of sets of persistent objects (R-objects)

:R-pair A type of pairs (instances of kongra.core.Pair custom utility

class) of persistent objects (R-objects)

:R-map A type of maps :R-obj → :R-obj (where persistent objects are

both keys and values)

:R-bindings A type of maps :str → :R-obj (with java.lang.String keys

and persistent objects values)

Besides the primitive Store types there are the complex types that are the

core of the whole Repo type system. These complex types are called R-types.

The R-types are first-class objects in Clojure. This also refers to the basic

Store types, as keywords and class names that denote them are the first-class

objects is the host language. An R-type is essentially just a named (symbolic)

wrapper around an unsigned 16-bit integer (thus in inclusive range

0 .. 65535). So the limiting number of types in any system implemented using

the Repo is 65536. We consider the number to be sufficient in production

environments and – as will be stated further (in Section 3) – it opens the way

for the effective persistent objects encoding.

R-types may participate in multiple inheritance and there is no ┬ (top)

type, albeit defining a custom subclassing hierarchy root is perfectly possible

only not mandated by the language itself.

The R-types definition language is given by the following rules:

<R-type definition> ::= (R-deftype <name> [<base-types>] <properties>)

<base-types> ::= ε | <base-type> <base-types>

<properties> ::= ε | <property> <properties>

<property> ::= (<property name> <property type>)

Konrad Grzanek

9

<name> ::= instance of clojure.core.Symbol

<property name> ::= instance of clojure.core.Keyword | clojure.core.Symbol

<property type> ::= a valid primitive Store type

<base-type> ::= a symbol denoting already defined R-type

To illustrate the way R-types are defined, let's take a look at the following

example:

(use 'kongra.repo)

(R-deftype WithSrcInfo []

 (:src-file :R-obj)

 (:src-line Integer)

 (:src-pos Integer))

(R-deftype Named [WithSrcInfo]

 (:name String))

(R-deftype Obj [])

(R-deftype CompilationUnit [Named Obj]

 (:types :R-seq)

 (:import-clauses :R-seq))

Above there are the definitions of R-types being a part of the Java persis-

tent model in our software modeling and analysis tool. The types WithSrcInfo

and Obj do not have any super-type, while the CompilationUnit has two base

types (with respect to the subclassing relation, not subtyping), and so it can

be read that the CompilationUnit is a named object with the properties :types

and :import-clauses.

As it was stated earlier, the type system is dynamic and strong (no implicit

casts are possible), following the host language in this manner. But the prop-

erty types specification concerns solely the primitive Store types and not the

R-types. One can set an arbitrary R-type instance for the :src-file in a With-

SrcInfo (or derivative) persistent object, and the only verification will be as-

serting the :R-obj primitive Store type of the value being set.

The Repo API offers the following predicates related to the subclassing

semantics:

- (R-isa? <parent-type> <type>) → true if and only if the type is a subclass

(direct or indirect) of the parent-type.

- (R-instance? <type> <obj>) → true if and only if the persistent obj is of

the R-type type.

Repo: High-Level Persistence …

10

Figure 1. Example subclassing diagram

The inheritance diagram corresponding to the last example is shown above

at Figure.1. The R-isa relation is closely coupled with the R-isa? predicate;

the R-isa holds whenever R-isa? evaluates to true.

3 R-objects

The persistent Repo objects are called the R-objects. They are related to R-

types exactly the same way the Java object is related to it's class.

An R-object is an entity consisting of an identifier (an object of kon-

gra.repo.RID class) bundled together with it's R-type. The identifier is

a wrapper around an unsigned 48-bit integer, so the correct RIDs values range

inclusively from 0 up to 281474976710655. Because the R-type is represented

by a 16-bit unsigned integer, the full R-object integral representation takes

exactly 64 bits, that is a storage of a single java.lang.Long value. Figure 2

shows the way the persistent R-object looks like internally.

Figure 2. R-object representation layout

Konrad Grzanek

11

The most obvious way to get a reference to an R-object is to call it's R-type

with the RID argument:

(CompilationUnit 5)

This form returns a CompilationUnit instance of RID 5. To create a new

instance the R-type should be called either with no arguments like

(CompilationUnit)

or with the properties and corresponding values:

(CompilationUnit :name “src/Program.java”)

In both cases a new RID would be generated by an underlying Store se-

quence.

4 Storage

The way Repo approaches the persistent R-objects storage and life-cycle

management is unlike the traditional ways that can be met in other database

solutions. In the first place it must be underlined that the expressions like

(<R-type> <RID>)

return references to R-objects that may be either existent or not. More

broadly speaking, the Repo does not manage the RIDs' life-cycle by storing

them on R-object's creation and deleting on removal. The only place where

the persistent changes related to RIDs are made during an R-object creation is

the underlying Store sequence mechanism. Because a sequence is unidirec-

tional, nothing related to the identifiers happens when a persistent R-object is

being removed. This approach is somewhat counterintuitive for the program-

mers accustomed to the relational model in particular, but it has got it's advan-

tages:

- R-objects creation and deletion is very cheap both in terms of storage size

and performance,

- The approach exhibits the dynamic characteristics staying on track with

the philosophy of the host language

The storage mechanisms start playing vital role when storing the property

values of R-objects. When someone wants to set a property value on a persis-

tent object he has to call R-assoc procedure properly. The procedure usage is

as follows:

Repo: High-Level Persistence …

12

(R-assoc <obj>

 <property 1> <value 1>

 ...

 <property N> <value N>)12

Every property of a specified R-type has an associated store that maps

a RID onto the property value. Accessing the property of a persistent object

always requires only an access to this store and so it is fine-grained, fetching

the complete object is not necessary. It also creates an opportunity to locate

the physical data of properties on different partitions, hosts etc.

The most simple way to get a value of a property is to use an R-object as

a map:

(def cu (CompilationUnit 5)) ;; cu denotes a CompilationUnit

 ;; of RID 5.

(cu :name) ;; evaluates to the :name of

 ;; an object represented by cu

When an entry in the underlying store for a property of a particular type is

missing, the property value is nil (null in Java). When one sets a property

value to nil, the appropriate entry is being removed (if present) from the store.

This fact in the correlation with the fine-grained way the Repo manages prop-

erty values makes the whole solution especially useful for managing sparse

data.

Following that, the R-object's deletion is solely a process of setting all

property values to nil for the R-object's RID – effectively removing all entries

for RID key from all stores of all R-object's properties. Yet – as it was men-

tioned earlier when discussing the Repo storage principles – the removed R-

object is still operational:

(R-del cu) ;; deletes the object represented by cu

(R-assoc cu :name “some/other.name”)

 ;; cu is perfectly valid for further

 ;; operations

1 The procedure closely resembles clojure.core/assoc. It is worth noting that the persistent R-

objects support the maps semantics with respect to the querying operations by implementing

clojure.lang.ILookup.

2 Setting the property values is also possible on R-object's creation, when calling the proper

constructor variant, e.g. (CompilationUnit :name “src/Program.java”) associates

the property :name with the specified String while creating a new persistent CompilationU-

nit representation.

Konrad Grzanek

13

5 Accessors

The notion of property accessors is not uncommon in the Lisp world. One

of the most significant works using this term and semantics was the Common

Lisp Object System (CLOS) described in [7]. In general an accessor is a pro-

cedural mechanism for accessing values of object's properties. Java program-

ming language comes with a similar idea expressed by POJO (Plain Old Java

Objects) getters and setters wrapping the access to fields ([8]). Repo keeps

this semantics introducing it's own implementation that is to be described in

this section.

There are two kinds of accessors in Repo:

1. Readers – procedures created by the following λ-expression:

 (fn [obj type property] ...)

2. Writers – procedures of shape: (fn [obj type property value] …)

where obj is the R-object on which the access is to be made, type is the ex-

act R-type of the R-object, property is the name (symbol, keyword) of the

property to be accessed and value of the writer is the property value to be

written to the store for <type, property> pair.

The Repo API allows to define a reader by calling R-defreader like be-

low:

(R-defreader CompilationUnit :name

 (fn [obj type property]

 ...))

The above expression defines a reader procedure for the CompilationUnit

R-type and :name property. Similarly the form

(R-defwriter CompilationUnit :name

 (fn [obj type property value]

 ...))

is a definition of a writer for the specified R-type and property. Both ac-

cessors may be defined in one place, by making a simplified R-defaccessor

call:

(R-defaccessor CompilationUnit :name

 (fn [obj type property] ...)

 (fn [obj type property value] ...))

Repo: High-Level Persistence …

14

There are the following utilities that may simplify implementing the acces-

sors' bodies:

R-this A predefined accessor (an object playing the role of both

reader and writer) that represents the current accessing

mechanism registered for the R-type of the R-object and

the specified property.

R-super An accessor representing the current accessing mechan-

ism of the super-type. When using the multiple inherit-

ance property of Repo type system must be taken into

account.

R-raw-reader

R-raw-writer

R-raw

Reader,

writer and

accessor representing the default Store-based access me-

chanism.

R-get A procedural wrapper around property reading. If there is

a necessity of accessing the R-object's property value

using an explicitly specified reader, this procedure can be

used, e. g.:

(R-get cu R-raw :name “Default name value”)

The example above returns a value of the :name of the R-

object represented by the cu symbol. Additionally if the

read :name is nil, the passed default string will be used as

the result. Mimics the clojure.core/get procedure.

R-assoc Writing procedure described above also supports acces-

sors. See the example below:

(R-assoc cu R-super :name “some/file.c”)

where the super-type accessor (writer) is used to write the

:name of the R-object represented by the cu symbol.

6 Running across R-objects

Due to to the principles of Repo storage described in Section 4, there is no

possibility to perform a sequential run across the R-objects of a given R-type.

Instead, there is a way to access R-objects together with the specified proper-

Konrad Grzanek

15

ty. Sequential runs in Repo apply to the stores that underly the properties.

Speaking more precisely, they are made across the store entries contained in

the particular store, rather than RIDs or R-objects themselves. The following

procedures are the crucial ones here:

R-entries Returns a collection of pairs (instances of kon-

gra.core.Pair utility class) representing all entries for the

passed R-type and property. An additional parameter

with-subtypes? (true by default) means the resolution

will be performed also for subtypes of R-type. Setting it

to false or nil narrows the process only to the passed R-

type argument. Requires a cleanup context3 to exist on the

run-time.

R-do-entries Executes the unary function passed as the argument on

every pair belonging to the collection that represents all

entries for the passed R-type and property. Executes

within it's own own cleanup context.

R-map-entries Returns a collection of entries in R-type and property

mapped onto f. f is expected to accept a single pair argu-

ment. An additional parameter allows to specify whether

or not the collection is to be lazy. Non-laziness is the

default. If the laziness is requested, a cleanup context is

required.

7 Summary

Presented database solution is a thin yet highly valuable language layer

built on top of a very effective in-process, no-SQL data storage and imple-

mented as a domain specific language embedded in a host language, Clojure

in this case. The design phase was in fact dedicated to accomplish all the fol-

lowing goals:

3 The cleanup context mentioned in [2]. It is a syntactic and semantic construct implemented

as a Lisp macro ([9]) and using dynamic variables that allows to effectively and safely man-

age persistent and – in general – vulnerable resources that require an explicit fetch/release,

like the memory, networking connections, files system handles. The basic usage is simple:

(doclean …) where the body (represented by …) will be executed within the cleanup context.

Repo: High-Level Persistence …

16

- Ease of use from the programmer's point of view implying minimalism of

the API

- Power of the means of expression in the sub-language assuming the ortho-

gonality an completeness of all operators/procedures

- Performance4 and a relative “low weight” of the layer

These initial assumptions influenced not only the Repo design but also im-

plementation phase. To what extent the author managed to accomplish the

initially decreed purpose is an open question targeted towards all the potential

future users.

Currently Repo is used as a vital part of software analysis and reasoning

tool. Any future enhancements are planned to be done on demand.

References

1. Pierce B.C., 2002: Types and programming languages, pp. 1–632. MIT Press

2. Grzanek K., 2010, Store: Embedded Persistent Storage For Clojure Program-

ming Language, Journal of Applied Computer Science Methods No. 1 Vol. 2,

pp. 83

3. Grzanek K., 2009: Realization of The Design Patterns Occurrences Recognition

System with Static Analysis Methods, PhD Thesis, Department of Computer En-

gineering, Czestochowa University of Technology, pp.1–192

4. Halloway S., 2009: Programming Clojure, ISBN: 978-1-93435-633-3, The

Pragmatic Bookshelf

5. Clojure Website 2012: http://clojure.org

6. Oracle Corp. 2012, Berkeley DB Java Edition Architecture,

http://www.oracle.com/ technetwork/products/berkeleydb/learnmore/bdb-je-

architecture-whitepaper-366830.pdf

7. Kiczales G., Rivieres J., Bobrow D.G., 1991, The Art of the Metaobject Proto-

col, MIT Press, ISBN 0-262-61074-4

8. Oracle Corp. 2012, Java Language and Virtual Machine Specifications,

http://docs.oracle.com/javase/specs/

9. Graham P., 1993, On Lisp - Advanced Techniques for Common Lisp. Prentice

Hall

4 The performance considerations and run-time benchmarking results go far beyond the scope

of this paper despite their importance.

