PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applying spatial statistical methods to predict ground vibration accelerations caused by induced seismicity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of the research aimed at improving the accuracy of predictions regarding the maximum values of resultant components for horizontal ground vibration accelerations in areas threatened by induced seismicity. The presented solution proposes a spatial model of the ground vibration attenuation relationship based on the assumptions of the Joyner-Boore model. When performing statistical analyses to verify the models, great emphasis was placed on the correctness of applied estimation methods to meet the assumptions. The starting point for introducing spatiality into the models was the occurrence of spatial autocorrelation of the residual component when estimating the structural parameters of a model with the least-squares method. Spatial interactions were presented using weight matrices, the construction of which was based on the inverse of the distance between units. During the study, it was found that the estimated spatial model of the ground vibration attenuation relationship showed a much better match with empirical data compared to the classical Joyner-Boore attenuation model.
Rocznik
Strony
645--660
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • The Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation
  • Polska Grupa Górnicza S.A.
Bibliografia
  • [1] Z. Zembaty, S. Kokot, F. Bozzoni, L. Scandella, C.G. Lai, J. Kuś, P. Bobra, A system to mitigate deep mine tremor effects in the design of civil infrastructure. Int. J. Rock Mech. Mining. Sci. 74 (2015).
  • [2] A. McGarr, J. Bicknell, E. Sembera, R. Green, Analysis of Exceptionally Large Tremors in Two Gold Mining Districts of South Africa. Pure and Applied Geophysics 129 (1989).
  • [3] H.C. Uzoegbo, K. Li, Mine induced events and its effect on nearby settlements in South Africa. The 14th World Conference on Earthquake Engineering (2008).
  • [4] J. Dubiński, K. Stec, A. Lurka, Oddziaływanie wstrząsów sejsmicznych na powierzchnię w zależności od ich parametrów fizycznych. Wydawnictwo GIG, Katowice (2005).
  • [5] G. Mutke, Oddziaływanie górniczych wstrząsów sejsmicznych na powierzchnię. Wydawnictwo GIG, Katowice (2019).
  • [6] K. Stec (Ed.), Geologiczne przyczyny wzmacniania drgań w nadkładzie serii węglowej na obszarze Górnośląskiego Zagłębia Węglowego. Wydawnictwo GIG, Katowice (2001).
  • [7] P. Bańka, E. Lier, M.M. Fernandez, A. Chmiela, Z.F. Muniz, A.B. Sanchez, Directional attenuation relationship for ground vibrations induced by mine tremors. J. Min. Sci. 56 (2) (2020). DOI: https://doi.org/10.1134/S1062739120026698.
  • [8] D. Olszewska, S. Lasocki, Relacja tłumienia wartości szczytowej przyspieszenia drgań gruntu z uwzględnieniem amplifikacji dla wybranych rejonów obszaru LGOM. Warsztaty z cyklu Zagrożenia naturalne w górnictwie, (2006).
  • [9] A. Golik, M. Mendecki, Ground-Motion Prediction Equations for Induced Seismicity in the Main Anticline and Main Syncline, Upper Silesian Coal Basin, Poland. Acta Geophysica 60 (2012).
  • [10] W.B. Joyner, D.M. Boore, Peak horizontal acceleration and velocity from strong motion records including records from the 1979 imperial valley, California, earthquake. Bulletin of Seismological Society of America 71 (6), (1981).
  • [11] K.W. Campbell, Near-source attenuation of peak horizontal acceleration. Bulletin of the Seismological Society of America 71 (6), (1981).
  • [12] M. Atkinson, D.M. Boore, Recent trends in ground motion and spectral response relations for North America. Earthquake Spectra (1990).
  • [13] J. Douglas, B. Edwards, Recent and future developments in earthquake ground motion estimation. Earth-Science Reviews 160, (2016). DOI: https://doi.org/10.1016 /j.earscirev.2016.07.005.
  • [14] K.W. Campbell, Empirical prediction of near-source and soft-rock ground motion for the Diablo Canyon power plant site, San Louis Obispo country, California. Technical report, Dames & Moore, Evergreen, Colorado (1990).
  • [15] N.N. Ambraseys, J. Douglas, S.K. Sarma, Equations for the estimation of strong ground motion from shallow crustal earthquakes using data from Europe and Middle East: Vertical peak ground acceleration and spectra acceleration. Bulletin of Earthquake Engineering 3 (1), (2005).
  • [16] J. Douglas, Earthquake ground motion estimation using strong-motion records a review of equations for the estimation of peak ground acceleration and response spectra. Earth-Science Reviews (2003).
  • [17] H. Si, S. Midorikawa, New attenuation relations for peak ground acceleration and velocity considering effects of faulty type and site condition. 12th World Conference on Earthquake Engineering (2000).
  • [18] J. Chodacki, New Ground Motion Prediction Equation for Peak Ground Velocity and Duration of Ground Motion for Mining Tremors in Upper Silesia. Acta Geophysica 64, (2016).
  • [19] K.W. Campbell, Y. Bozorgnia, NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5%-damped linear acceleration response spectra. Earthquake Spectra 30 (3), (2014).
  • [20] I.J. Bommer, B. Dost, B. Edwards, P.J. Stafford, J. van Elk, D. Doornhof, M. Ntinalexis, Developing an application specific ground-motion model for induced seisimicity. Bulletin of the Seismological Society of America (2016).
  • [21] S. Lasocki, D. Olszewska, Ground motion prediction equations for mining induced seismicity in Legnica Glogow Cooper District in Poland. 16th World Conference on Earthquake, Santiago, Chile (2017).
  • [22] Ł. Szuła, Statystyczna weryfikacja regresyjnego modelu relacji tłumienia wyznaczonego na podstawie wyników obserwacji drgań gruntu. Przegląd Górniczy 74 (8), (2018).
  • [23] S. Esposito, I. Iervolino, PGA and PGV spatial correlation models based on European multievent datasets. Bulletin of the Seismological Society of America 101 (5), (2011).
  • [24] S. Esposito, I. Iervolino, Spatial correlation of spectral acceleration in European data. Bulletin of the Seismological Society of America 102 (6), (2012).
  • [25] J. Park, P. Bazzurro, J.W. Baker, Modeling spatial correlation of ground motion Intensity Measures for regional seismic hazard and portfolio loss estimation. Applications of statistics and probability in civil engineering. Taylor & Francis Group, London (2007).
  • [26] J.W. Baker, M. Markhvida, Y. Chen, Progress in measuring spatial correlations in ground motion intensity. Oral Presentation at 17th World Conference on Earthquake Engineering, 17WCEE (2020).
  • [27] E. Schiappapietra, J. Douglas, Modelling the spatial correlation of earthquake ground motion: Insights from the literature, data from the 2016-2017 Central Italy earthquake sequence and ground-motion simulations. Earth-Science Reviews 203, (2020). DOI: https://doi.org/10.1016/j.earscirev.2020.103139.
  • [28] K. Kopczewska, Ekonometria i statystyka przestrzenna z wykorzystaniem programu R CRAN. Wydawnictwo CeDeWu, Warszawa (2010).
  • [29] D. Foszcz, Estymacja parametrów funkcji regresji metodą klasyczną oraz metodami bootstrapowymi. Górnictwo I Geoinżynieria 30 (3/1), 67-78 (2006).
  • [30] B. Suchecki, Ekonometria przestrzenna. Metody i modele analizy danych przestrzennych, Wydawnictwo C.H.Beck, Warszawa (2010).
  • [31] L. Anselin, Spatial Econometrics: Methods and Models. Kluwer Academic Publishers, Dordrecht (1988).
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bad7c863-4c9a-434f-9204-5e53262b2980
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.