PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the Transfer Radioactive Contamination from the Chernobyl Zone and its Impact on Radiation in the Environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study examined the consequences of a forest fire in a radioactively polluted area in the Chernobyl accident zone, namely the transfer of radioactive substances as well as their impact on the environment and radiation situation. The purpose of the study was to develop a mathematical model of the transfer of radioactive substances and a methodology for integrated assessment of the ability of an ecosystem to retain deposited radionuclides. The research methodology is based on existing proven mathematical methods and models, such as the turbulent diffusion model, the Gaussian static model, and the hierarchy analysis method (Thomas L. Saaty method). Models were obtained for the formation of a radioactive smoke cloud and its migration in the atmospheric air, the spread of radioactive aerosols and gas components, taking into account convection, turbulent exchange, humidity, wind strength and direction over the combustion zone. The processes of blowing and fluttering in the wind by the wind as the horizontal migration perturbers of radioisotopes represent a new, still insufficiently studied area of research. Integral indicators for assessing the ability of the natural components of the forest complex to reliably accumulate and retain the radioisotopes that have settled have been determined. It was revealed that the priority factors of impact on the environment and the degree of radioactive contamination are the activity and directions of migration of combustion products, which constitute radioactive contamination.
Twórcy
  • National Technical University Kharkiv Polytechnic Institute, Kharkiv, Ukraine
  • Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
  • Vasil Levski National Military University, Veliko Tarnovo, Bulgaria
  • GC University Hyderabad, Sindh, Paksitan
  • Institute of Public Administration and Research in Civil Protection, Kyiv, Ukraine
  • Institute of Public Administration and Research in Civil Protection, Kyiv, Ukraine
  • Kharkiv National Automobile and Highway University, Kharkiv, Ukraine
  • Institute of Public Administration and Research in Civil Protection, Kyiv, Ukraine
  • National University of Civil Defence of Ukraine, Kharkiv, Ukraine
Bibliografia
  • 1. Azarov, S.Y. 1998. Zahriaznenye atmosfery 137 Cs pry lesnykh pozharakh v Chernobylskoi zone. Radyatsyonnaia byolohyia. Radioecology, 36(4), 474–483.
  • 2. Azarov, S.Y. 2001. Metodyka analyza radyatsyonnoho ryska pry tushenyy pozhara na terrytoryiakh, zahriaznennykh radyonuklydamy. Fire and explosion safety, 1(1), 40–43.
  • 3. Dolchinkov, N.T. 2017. Sources of natural background radiation. Security and Defence Quarterly, 16(3), 40–51. https://doi.org/10.35467/SDQ/103183
  • 4. Dolchinkov, N.T., Karaivanova-Dolchinkova, B.E. 2016. Radiation effect on human and living nature. Science. Business. Society, 1(5), 59–61.
  • 5. Evangeliou, N., Eckhardt, S. 2020. Uncovering transport, deposition and impact of radionuclides released after the early spring 2020 wildfires in the Chernobyl Exclusion Zone. Scientific Reports, 10(1), 10655. https://doi.org/10.1038/s41598-020-67620-3
  • 6. Evangeliou, N., Zibtsev, S., Myroniuk, V., Zhurba, M., Hamburger, T., Stohl, A., Balkanski, Y., Paugam, R., Mousseau, T.A., Møller,A.P., Kireev, S.I. 2016. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment. Scientific Reports, 6(1), 26062.
  • 7. Groza, V., Matvieieva, I. 2019. Mathematical modeling of dynamics of radioecological processes and reliability of pollutants transport in a forest ecosystem. Bulletin of the Ternopil National Technical University, 93(1), 102–112. https://visnyk.tntu.edu.ua/pdf/93/481.pdf
  • 8. Kirkland, M., Atkinson, P.W., Pearce-Higgins, J.W., de Jong, M.C., Dowling, T.P., Grummo, D., Critchley, M., Ashton-Butt, A. 2023. Landscape fires disproportionally affect high conservation value temperate peatlands, meadows, and deciduous forests, but only under low moisture conditions. Science of the Total Environment, 884, 163849. https://www.sciencedirect.com/science/article/abs/pii/S0048969723024701
  • 9. Liu, Y., Huang, Y., Liggio, J., Hayden, K., Mihele, C., Wentzell, J., Critchley, M., Li, S.M. 2023. A newly developed Lagrangian chemical transport scheme: Part 1. Simulation of a boreal forest fire plume. Science of The Total Environment, 880, 163232. https://doi.org/10.1016/j.scitotenv.2023.163232
  • 10. Meng, Q., Huai, Y., You, J., Nie, X. 2023. Visualization of 3D forest fire spread based on the coupling of multiple weather factors. Computers & Graphics, 110, 58–68. https://www.sciencedirect.com/science/article/abs/pii/S0097849322002254
  • 11. Saha, S., Bera, B., Shit, P.K., Bhattacharjee, S., Sengupta, D., Sengupta, N., Adhikary, P.P. 2023. Recurrent forest fires, emission of atmospheric pollutants (GHGs) and degradation of tropical dry deciduous forest ecosystem services. Total Environment Research Themes, 7, 100057. https://doi.org/10.1016/j.totert.2023.100057
  • 12. Schüle, M., Domes, G., Schwanitz, C., Heinken, T. 2023. Early natural tree regeneration after wildfire in a Central European Scots pine forest: Forest management, fire severity and distance matters. Forest Ecology and Management, 539, 120999. https://doi.org/10.1016/j.foreco.2023.120999
  • 13. Vambol, S., Vambol, V., Yeremenko, S., Sydorenko, V., Khan, N.A. 2022. Forecasting the release of radioactive combustion products from the forest fire zone. Available: https://web.archive.org/web/20230119035959id_/http://naukarus.ru/public_html/wp-content/uploads/2023/Tom1.pdf
  • 14. Sydorenko, V., Yeremenko, S., Vambol, V., Vambol, S., Poberezhna, L. 2022. Distribution and influence of forest fires on the ecological and radiation situation in radioactively contaminated areas. Procedia Structural Integrity, 36, 318–325. https://www.sciencedirect.com/science/article/pii/S2452321622000427
  • 15. Vambol V., Vambol S., Yeremenko S., Shevchenko R. 2021. Forest fires in radioactively contaminated territory: the consequences of the Chernobyl disaster today. Radiation safety in the modern world, 2. Available: http://naukarus.ru/public_html/wp-content/uploads/DOI/sbornik%20-%202.pdf#page=48 https://doi.org/10.34660/INF.2021.17.31.003
  • 16. Wu, Z., Wang, B., Li, M., Tian, Y., Quan, Y., Liu, J. 2022. Simulation of forest fire spread based on artificial intelligence. Ecological Indicators, 136, 108653. https://www.sciencedirect.com/science/article/pii/S1470160X22001248
  • 17. Yeremenko, S., Sydorenko, V., Andrii, P., Shevchenko, R., Vlasenko, Y. 2021. Existing risks of forest fires in radiation contaminated areas: A critical review. Ecological Questions, 32(3), 35–47. https://apcz.umk.pl/EQ/article/view/33929
  • 18. Zhao, J., Wang, J., Meng, Y., Du, Z., Ma, H., Qiu, L.,Tian, Q., Wang, L., Xu, M., Zhao, H., Yue, C. 2023. Spatiotemporal patterns of fire-driven forest mortality in China. Forest Ecology and Management, 529, 120678. https://www.sciencedirect.com/science/article/abs/pii/S0378112722006727
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bad4ec22-70a4-4504-a480-ea96e3e788f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.