PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On a Possibility of a Side Impact Collision Analysis Based on the Coefficients of Restitution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper a potential use of the tangential coefficient of restitution has been analyzed on the basis of a computer simulation of a side oblique collision between two motor vehicles. The simulation was carried out in PC-Crash 8.0. The results obtained for a side impact collision have been considered along with the tangential phenomena occurring between the colliding vehicles. The simulation was repeated three times for the adopted values of the coefficient of restitution. Then the coefficient of restitution was divided into two components (normal and tangential) which has been described in further parts of the paper. The obtained results were compared with the certain analytical calculations basing on the vehicle crash model for a vehicles performing a planar motion but with the phenomena between their bodies included. Also a theory of collision between the rough surfaces was used. The aim of this analysis was to examine whether the coefficient of restitution divided into two perpendicular components will alter the results obtained from the analytical calculations and if it is worthy considering such division in analyzing the real accidents in road traffic. Also it has been considered whether such complication of a vehicle crash model is useful and necessary.
Słowa kluczowe
EN
Twórcy
  • Kazimierz Pulaski University of Technology and Humanities, Malczewskiego 29, 26-660 Radom, Poland
  • Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland
  • Military University of Aviation, Dywizjonu 303 No. 35, 08-521 Dęblin, Poland
Bibliografia
  • 1. Abe M., Morisawa M., Arai K. Sato T. B., Threedimensional Behavior of Vehicle at Oblique Side Collision - Computer Simulation Using Dynamical Model, JSAE Review, 16(3), 1995.
  • 2. Ahmad M., Ismail K. A., Mat F., Impact models and coefficient of restitution: a review, ARPN Journal of Engineering and Applied Sciences, 11(10), 2016.
  • 3. Aleksandrowicz P., Modeling Head-On Collisions: The Problem of Identifying Collision Parameters, Applied Sciences, 10(18), 2020, DOI: https://doi. org/10.3390/app10186212.
  • 4. Antonetti V.W., Estimating the coefficient of restitution of vehicle-to-vehicle bumper impacts, SAE technical paper 980552, 1998, DOI: https://doi. org/10.4271/980552.
  • 5. Batista M., On the Mutual Coefficient of Restitution in Two Car Collinear Collisions, Physics and Society 2006, arXiv, 2006. https://doi.org/10.48550/ arXiv.physics/0601168,
  • 6. Batista M., Zovak G., A restitution model of two-car collinear collisions, Promet – Traffic & Transporta- tion, Vol. 19, No. 1, 2007.
  • 7. Brach R., Brach R., A Review of Impact Models for Vehicle Collision, SAE Technical Paper 870048, 1987, DOI: https://doi.org/10.4271/870048.
  • 8. Brach R.M., An impact moment coefficient for vehicle collision analysis. SAE paper 770014, SAE Transactions, Vol. 86, Section 1: 770010–770187, 1977, DOI: https://doi.org/10.4271/770014.
  • 9. Brach R., Brach M., Analysis of Collisions, Point Mass Mechanics and Planar Impact Mechanics, Collision Magazine, 2(1), 2007.
  • 10. Brach R., Impact Analysis of Two-Vehicle Collisions, SAE Technical Paper 830468, 1983, DOI: https://doi.org/10.4271/830468.
  • 11. Brach R. M., Identification of Vehicle and Collision Impact Parameters from Crash Tests, Journal of Vibration Accoustics 106(2), 1984, DOI: https:// doi.org/10.1115/1.3269180.
  • 12. Brach R. M., Momentum and Energy Analysis of Automobile Collisions, J. Morton, Ed, Structural Impact and Crashworthiness, Vol. 2, Imperial College, London, England, 1984.
  • 13. Brach R., Brach R., Louderback A., Uncertainty of CRASH3 ΔV and Energy Loss for Frontal Collisions, SAE Technical Paper 2012-01-0608, 2012, DOI: https://doi.org/10.4271/2012-01-0608.
  • 14. Brach R., Brach R., Pongetti K., Analysis of High- Speed Sideswipe Collisions Using Data from Small Overlap Tests, SAE Int. J. Trans. Safety 2(1):86-99, 2014, DOI: https://doi.org/10.4271/2014-01-0469.
  • 15. Cannon, J. W., Dependence of a Coefficient of Restitution on Geometry for High Speed Vehicle Collisions, SAE Transactions, 110: 1063-076, 2001, DOI: 10.4271/2001-01-0892.
  • 16. Gryboś R., Teoria uderzenia w dyskretnych układach mechanicznych, PWN, Warsaw, Poland, 1969 (in Polish).
  • 17. Han I., Brach R., Throw Model for Frontal Pedestrian Collisions, SAE Technical Paper 2001-01-0898, Journal of Passenger Car: Mechanical Systems, 110(6), 2001.
  • 18. Huang, M., Vehicle Crash Mechanics, Applied Mechanics Reviews, 56(5), 2003, DOI: https://doi. org/10.1115/1.1584416.
  • 19. Ishikawa H., Impact center and restitution coefficients for accident reconstruction, SAE technical paper 940564, Journal of Passenger Cars, 103(6), 1994, DOI: https://doi.org/10.4271/940564.
  • 20. Ishikawa H., Impact model for accident reconstruction - normal and tangential restitution coefficients, SAE technical paper 930654, 1993, DOI: https:// doi.org/10.4271/930654.
  • 21. Ishikawa H., Restitution Coefficients in Car-to-Car Collisions, JSAE 1995
  • 22. Kisilowski J. Zalewski J., Analysis of the Selected Aspects of a Crash between Two Vehicles, Proceedings of the 2nd International Conference on Advances in Computer Science and Engineering (CSE 2013), Atlantis Press, 2013, DOI: https://doi. org/10.2991/cse.2013.23.
  • 23. Linder A., Douglas C., Clark A., Fildes B., Yang J., Otte D., Mathematical simulations of real-world pedestrian-vehicle collisions, NHTSA Paper no. 05- 285, 2005.
  • 24. Michalczyk J., Phenomenon of force impulse restitution in collision modelling, Journal of Theoretical and Applied Mechanics, 46(4), 2008.
  • 25. Mnyazikwiye B.B., Karimi H.R., Robbersmyr K.G., Mathematical Modeling of Vehicle Frontal Crash by a Double Spring-Mass-Damper Model, IEEE, 2013, DOI: 10.1109/ICAT.2013.6684071.
  • 26. Monson, K., Germane, G., Determination and Mechanisms of Motor Vehicle Structural Restitution from Crash Test Data, SAE Technical Paper 1999-01-0097, 1999, DOI: https://doi. org/10.4271/1999-01-0097.
  • 27. Neades J., Equivalence of impact phase models in two vehicle planar collisions, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227(9), 2013, DOI: 10.1177/0954407013491905.
  • 28. Pawlus W., Karimi H. R., Robbersmyr K.G., Investigation of vehicle crash modeling techniques: theory and application, The International Journal of Advanced Manufacturing Technology 2014, 70(5), DOI: https://doi.org/10.1007/s00170-013-5320-3.
  • 29. Reimpell J., Stoll H., Betzler J., The Automotive Chassis: Engineering Principles, 2nd Edition, Butterworth-Heinemann, 2001.
  • 30. Rose N. A., Fenton S., J., Beauchamp G., Restitution Modeling for Crush Analysis: Theory and Validation, SAE paper 2006-01-0908, 2006, DOI: https://doi.org/10.4271/2006-01-0908.
  • 31. Savova-Mratsenkova M., Djonev G, Determining the values of the Coefficient of Restitution in the meanwhile of a crash between two vehicles, IOP Conference Series: Materials Science and Engineering 618:012058, 618, 2019, DOI: 10.1088/1757-899X/618/1/012058.
  • 32. Smit S., Tomasch E., Kolk H., Plank M., Gugler J., Glaser H, Evaluation of a momentum based impact model in frontal car collisions for the prospective assessment of ADAS, European Transport Research Review, 11(2), 2019, DOI: 10.1186/ s12544-018-0343-3.
  • 33. Vangi D., Collision stage reconstruction in traffic accidents: Sensitivity analysis, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 219(3), 2005, DOI: https://doi.org/10.1243/095440705X6613.
  • 34. Vangi D., Vehicle Collision Dynamics. Analysis and Reconstruction, Butterworth – Heinemann, 2020, DOI: https://doi.org/10.1016/C2016-0-03879-2.
  • 35. Yuta Y., Yuqing Z., Koji M., Analysis of normal and tangential restitution coefficients in car collisions based on finite element method, International Journal of Crashworthiness, 2021, DOI: 10.1080/1358 8265.2021.1926825.
  • 36. Zaikin O., Korablin A., Dyulger N., BarnenkovN., Model of the Relationship between the Velocity Restitution Coefficient and the Initial Car Velocity during Collision, Transportation Research Procedia, 20, 2017, DOI: https://doi.org/10.1016/j. trpro.2017.01.116.
  • 37. Zalewski J., Analysis of a road accident in the as- pect of mechanics of a frontal crash between two vehicles, Diagnostyka, 16(4), 2015.
  • 38. Zalewski J. Selected problems of motor vehicle maintenance after side impact collision, MATEC Web of Conferences, 182, 2018, DOI: 10.1051/ matecconf/201818201019.
  • 39. Zhoua J., Pengb H., Luc J., Collision model for vehicle motion prediction after light impacts, Vehicle System Dynamics Supplement, 46, 2008, DOI: https://doi.org/10.1080/00423110701882256.
  • 40. Zioła A., Verification of road accident simulation created with the use of PC-Crash software, Scientific Journal of Silesian University of Technology, Series Transport, 98, 2018, DOI: https://doi org/10.20858/sjsutst.2018.98.20
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bad272fb-3121-4de8-a95c-bff853979e68
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.