PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of construction parameters and the type of substrate on the conductivity value of multilayer structures made of NiFe and SiO2

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents a method of obtaining multilayer NiFe-SiO2 nanocomposites by non-reactive magnetron sputtering. Structures with different numbers and thicknesses of layers were made on two different types of dielectric substrates. Electrical parameters were tested in the frequency range from 4 Hz to 8 MHz, as well as measurements of the surface roughness of the substrates. Based on the results, the influence of design parameters and the aging effect on the AC properties of the structures was determined.
Twórcy
Bibliografia
  • [1] Tan, X., Huang, D., Zhao, M., Cheng, Q., Ren, Y., Chen, Y., Ren, Y., Cheb, Y., Yi, M., Zuo, X., Wang, Y., Song, Y., Lu. Q., Han, G., Li, H., “Research about passivation layer of SiO2 in GMR sensors for magnetic bead detection”, Journal of Magnetism and Magnetic Materials, vol. 585, 170912, 2023. https://doi.org/10.1016/j.jmmm.2023.170912
  • [2] Baig, M. M., Pervaiz, E., Azad, M., Jahan, Z., Niazi, M. B. K., Baig, S. M., “NiFe2O4/SiO2 nanostructures as a potential electrode material for high rated supercapacitors”, Ceramics International, vol. 47, no. 9, pp. 12557-12566, 2021. https://doi.org/10.1016/j.ceramint.2021.01.113
  • [3] Brautman L.J., Krock R.H., “Composite Materials”, Academic Press, New York, 1975
  • [4] Fedotov, A. K., Pashkevich, A. V., Fedotova, J. A., Fedotov, A. S., Kołtunowicz, T. N., Zukowski, P., Ronassi, A. A., Fedotova, V. V., Svito, I. A., Budzyński, M., “Electron transport and thermoelectric properties of ZnO ceramics doped with Fe”, Journal of Alloys and Compounds, vol. 854 2021, 156169, 2021. https://doi.org/10.1016/j.jallcom.2020.156169
  • [5] Jiang J., Shen, Z., Qian, J., Dan, Z., Guo, M., Lin, Y., Nan, C-W., Chen, L., Shen, Y., “Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density”, Energy Storage Materials, vol. 18, pp. 213-221, 2019. https://doi.org/10.1016/j.ensm.2018.09.013
  • [6] Nikmah A., Taufiq, A., & Hidayat, A., “Synthesis and characterization of Fe3O4/SiO2 nanocomposites”, Earth and Environmental Science, vol. 276, 012046, 2019. https://doi.org/10.1088/1755-1315/276/1/012046
  • [7] Ali Z., Mehmood, M., & Ghazi, Z. A., “Herring bone graphitic nanofibers grown on NiFe-silica nanocomposites by CVD method for HER activity in alkaline media”, Materials Letters, vol. 305, 130838, 2021. https://doi.org/10.1016/j.matlet.2021.130838
  • [8] Sciuto E.L., Bongiorno, C., Scandurra, A., Petralia, S., Cosentino, T., Conoci, S., Sinatra, F., Libertino, S., “Functionalization of bulk SiO2 surface with biomolecules for sensing applications: Structural and functional characterizations”, Chemosensors, vol. 6, no. 4, 2018. https://doi.org/10.3390/chemosensors6040059
  • [9] Zukowski P., Koltunowicz, T. N., Bondariev, V., Fedotov, A. K., Fedotova, J. A., “Determining the percolation threshold for (FeCoZr)x(CaF2)(100-x) nanocomposites produced by pure argon ion-beam sputtering”, Journal of Alloys and Compounds, vol. 683, pp. 62-66, 2016. https://doi.org/10.1016/j.jallcom.2016.05.070
  • [10] Zhu W., Zheng, G., Cao, S., He, H., “Thermal conductivity of amorphous SiO2 thin film: A molecular dynamics study”, Scientific reports, vol. 8, 10537, 2018, https://doi.org/10.1038/s41598-018-28925-6
  • [11] Raquet B., Goiran, M., Negre, N., Leotin, J., Aronzon, B., Rylkov, V., Meilikhov, E., “Quantum Size Effect transition in percolating nanocomposite films”, Phys. Rev., vol. 62, 17144, 2000
  • [12] Clerc J.P., Giraud, G., Laugier, J. M., Luck, J. M., “The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models”, Advances in Physics, vol. 39, pp. 191-309, 1990. https://doi.org/10.1080/00018739000101501
  • [13] Du, S., Ren, Z., Wang, X., Wu, J., Meng, H., Fu, H., “Controlled Atmosphere Corrosion Engineering toward Inhomogeneous NiFe-LDH for Energetic Oxygen Evolution”, ACS Nano, vol. 16, no. 5, 7794–7803, 2022. https://doi.org/10.1021/acsnano.2c00332
  • [14] Navadeepthy D., Thangapandian, M., Viswanathan, C., & Ponpandian, N., “A nanocomposite of NiFe2O4–PANI as a duo active electrocatalyst toward the sensitive colorimetric and electrochemical sensing of ascorbic acid”, Nanoscale Adv., vol. 2, pp. 3481-3493, 2020. https://doi.org/10.1039/D0NA00283F
  • [15] Tian Y. Z., Yang, Y., Peng, S. Y., Pang, X. Y., Li, S., Jiang, M., Li, M. X., Wang, J. W., Qin, G. W., “Managing mechanical and electrical properties of nanostructured Cu-Fe composite by aging treatment”, Materials Characterization, vol. 196, 112600, 2023. https://doi.org/10.1016/j.matchar.2022.112600
  • [16] Tsoi G. M., Wenger, L. E., Senaratne, U., Tackett, R. J., Buc, E. C., Naik, R., Waishnava, P. P., Naik, V., “Memory effects in a superparamagnetic γ−Fe2O3 system”, Phys. Rev. B, vol. 72, 014445, 2005. https://doi.org/10.1103/PhysRevB.72.014445
  • [17] Islam, R. A., Priya, S, “Synthesis of High Magnetoelectric Coefficient Composites Using Annealing and Aging Route”, Applied Ceramic Technology, vol. 3, no. 5, pp. 353-363, 2006. https://doi.org/10.1111/j.1744-7402.2006.02099.x
  • [18] Wilczyńska A., Kołtunowicz, T. N., Kociubiński, A., Guzowski, B., Łakomski, M., “Influence of design and annealing parameters on measurements of AC properties of NiFe-SiO2 multilayer structures”, Journal of Magnetism and Magnetic Materials, vol. 597, no. 1, 172030, 2024. https://doi.org/10.1016/j.jmmm.2024.172030
  • [19] Kelly P.J., Arnell R.D., “Magnetron sputtering: a review of recent developments and applications”, Vacuum, vol. 56, pp. 159-172, 2000. https://doi.org/10.1016/S0042-207X(99)00189-X
  • [20] Freddi, A., Salmon, M, “Design principles and methodologies” Cham: Springer, pp. 159-180, 2019. https://doi.org/10.1007/978-3-319-95342-7
  • [21] Harter T., “Finite-size scaling analysis of percolation in three-dimensional correlated binary Markov chain random fields”, Physical Review E, vol. 72, 026120, 2005. https://doi.org/10.1103/PhysRevE.72.026120
  • [22] Żukowski P., Kołtunowicz, T., Partyka, J., Węgierek, P., Kolasik, M., Larkin, A., Fedotova, J., Fedotov, F., Vlasukova, L. A., „Model przewodności skokowej i jego weryfikacja dla nanostruktur wytwarzanych technikami jonowymi”, Przegląd Elektrotechniczny vol. 84, no. 3, pp. 247-249, 2008.
  • [23] Żukowski P., Koltunowicz, T. N., Boiko, O., Bondariev, V., Czarnacka, K., Fedotova, J. A., Fedotov, A. K., Svito, I. A., “Impedance model of metal dielectric nanocomposites produced by ion-beam sputtering in vacuum conditions and its experimental verification for thin films of (FeCoZr)x(PZT)(100-x)”, Vacuum, vol. 120, pp. 37-43, 2015. https://doi.org/10.1016/j.vacuum.2015.04.035
  • [24] Wilczyńska A., Kociubiński, A., Kołtunowicz, T. N., “Preparation of Discontinuous Cu/SiO2 Multilayers – AC Conduction and Determining the Measurement Uncertainty”, Sensors, vol. 23, no. 5, 2842, 2023. https://doi.org/10.3390/s23052842
  • [25] Raddaoui Z., El Kossi, S., Brahem, R., Bajahzar, A., Valentinovich Trukhanov, A., Leonidovich Kozlovskiy, A., Zdorovets, M. V., Dhahri, J., Belmabrouk, H., “Hopping conduction mechanism and impedance spectroscopy analyses of La0.70Sr0.25Na0.05Mn0.70Ti0.30O3 ceramic”, Journal of Materials Science: Materials in Electronics, vol. 32, pp. 16113–16125, 2021. https://doi.org/10.1007/s10854-021-06160-6
  • [26] Zaafouri A., Gzaiel, M., Gharbi, I., Bakari, B., “Electrical conductivity and hopping conduction mechanism by CBH model in AgCoPO4 compound prepared using solid-state reaction”, Journal of Materials Science: Materials in Electronics, vol. 35, pp. 1-12, 2024. https://doi.org/10.1007/s10854-024-12475-x
  • [27] Bocharov G. S., Eletskii, A. V., “Percolation Conduction of Carbon Nanocomposites, Molecular Sciences”, vol. 21, no. 20, 7634, 2020. https://doi.org/10.3390/ijms21207634
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
2. This work was supported by NAWA STER Programme within the project 'IDeaS of LUT – Internationalization of the Doctoral School of Lublin University of Technology' – ‘IDeaS MicroGrant’ task.First.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bacc9bdc-a057-4931-acdc-a61b9a0c6cab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.