PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel fused coupled chaotic map based confidential data embedding-then-encryption of electrocardiogram signal

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In telecardiology applications, research has been underway to protect the patient's confi-dential information from unauthorized access using Electrocardiogram (ECG) steganogra-phy or encryption approaches. A novel Fused Coupled Chaotic Map (FCCM) structure based integrated embedding-then-encryption approach is proposed for patient's confidential data embedding in ECG and its subsequent encryption. The proposed ECG embedding-then- encryption algorithm consists of four phases: confidential data ciphering, LSB embedding, substitution, and permutation. Four FCCMs under different initial conditions and control parameters undergoes level shifting or sorting based quantization. The updation of control parameters made to be ECG content aware of security enhancement. The generated {FCCMi,: i ε (1–4)} are applied to (i) cipher confidential data, (ii) craft the embedding locations to hide segmented-ciphered confidential data, (iii) substitution and (iv) permutation processes for data embedding-then-encryption of ECG. The performance of the proposed method was evaluated over MIT-BIH Arrhythmia and self-recorded ECG (lead-II) database. The test suites NIST-800 and 0-1 are employed to check randomness of chaotic sequences. The PRD, PRDN, PRD1024, RMS, SNR, PSNR, WWPRD, WEDD, and BERs were 0.04, 1.05, 0.75, 5.55 x 10-4, 41.21, 70.17, 3.02 x 10-2, 5.91 x 10-3, and 0.00 for MIT-BIH Arrhythmia ECG database (Lead-II) at payload 2.4Kb. Performance measures for Self-recorded dataset are 0.04, 2.62, 2.62, 5.49 x 10-4, 32.16, 68.72, 9.36 x 10-2, 1.93 x 102, and 0.00 respectively. Experimental results, security analysis and comparison with existing state-of-art methods prove the effectiveness of the proposed approach for assured patient's confidential data security. Furthermore, the efficiency of the proposed approach has also been evaluated on compressed ECG.
Twórcy
  • Department of Electronics and Communication Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, India; Department of Electronics and Communication Engineering, Dumka Engineering College, Dumka, India
autor
  • Department of Electronics and Communication Engineering, Guru Nanak Dev University, Jalandhar, India
  • Department of Electronics and Communication Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, India
autor
  • Department of Electronics and Communication Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, India
Bibliografia
  • [1] Birati E, Roth A. Telecardiology. Isr Med Assoc J 2011;13 (August (8)):498–503 [review].
  • [2] Abuadbba A, Khalil I, Atiquzzaman M. Robust privacy preservation and authenticity of the collected data in cognitive radio network – Walsh-Hadamard based steganographic approach. Pervasive Mob Comput 2015;22:58–70.
  • [3] Hu F, Jiang M, Wagner M, Dong DC. Privacy-preserving telecardiology sensor networks: toward a low-cost portable wireless hardware/software codesign. IEEE Trans Inf Technol Biomed 2007;11:619–27.
  • [4] Kang K, Park KJ, Song JJ, Yoon CH, Sha L. A medical-grade wireless architecture for remote electrocardiography. IEEE Trans Inf Technol Biomed 2011;15:260–7.
  • [5] Edward Jero S, Ramu P, Swaminathan R. Imperceptibility – robustness tradeoff studies for ECG steganography using continuous ant colony optimization. Expert Syst Appl 2016;49:123–35.
  • [6] Sufi F, Khalil I. A new feature detection mechanism and its application in secured ECG transmission with noise masking. J Med Syst 2009;33:121–32.
  • [7] Lee WB, Lee CD. A cryptographic key management solution for HIPAA privacy/security regulations. IEEE Trans Inf Technol Biomed 2008;12:34–41.
  • [8] Motwani P, Chaudhari D. Encrypted data concealment in electrocardiogram signal using chaos encryption method. Int J Res Emerg Sci Technol 2014;60–3.
  • [9] Mekala R, Vanitha S. Privacy protection of medical datas using ECG steganography. Int J Innov Sci Eng Res 2014;1.
  • [10] Zhang Z, Wang H, Vasilakos AV, Fang H. ECG-cryptography and authentication in body area networks. IEEE Trans Inf Technol Biomed 2012;16:1070–8.
  • [11] Murillo-Escobar MA, Cardoza-Avendaño L, López-Gutiérrez RM, Cruz-Hernández C. A double chaotic layer encryption algorithm for clinical signals in telemedicine. J Med Syst 2017;41:1–17.
  • [12] Raeiatibanadkooki M, Quchani SR, KhalilZade MM, Bahaadinbeigy K. Compression and encryption of ECG signal using wavelet and chaotically huffman code in telemedicine application. J Med Syst 2016;40:1–8.
  • [13] Liu TY, Lin KJ, Wu HC. ECG data encryption then compression using singular value decomposition. IEEE J Biomed Heal Informatics 2017;22:707–13. http://dx.doi.org/10.1109/JBHI.2017.2698498.
  • [14] Sufi F, Han F, Khalil I, Hu J. A chaos-based encryption technique to protect ECG packets for time critical telecardiology applications. Secur Commun Networks 2011;4:515–24. http://dx.doi.org/10.1002/sec.226.
  • [15] Ibaida A, Khalil I. Wavelet-based ECG steganography for protecting patient confidential information in point-of-care systems. IEEE Trans Biomed Eng 2013;60:3322–30.
  • [16] Ibaida A. Secure Steganography, Compression and Diagnoses of Electrocardiograms in Wireless Body Sensor Networks.PhD Thesis RMIT University; 2014.
  • [17] Edward Jero S, Ramu P, Ramakrishnan S. Discrete wavelet transform and singular value decomposition based ECG steganography for secured patient information transmission. J Med Syst 2014;38:1–11.
  • [18] Pandey A, Saini BS, Singh B, Sood N. An integrated approach using chaotic map & sample value difference method for electrocardiogram steganography and OFDM based secured patient information transmission. J Med Syst 2017;41:1–20. http://dx.doi.org/10.1007/s10916-017-0830-4.
  • [19] Edward Jero S, Ramu P, Ramakrishnan S. ECG steganography using curvelet transform. Biomed Signal Process Control 2015;22:161–9.
  • [20] Pandey A, Singh B, Saini BS, Sood N. A joint application of optimal threshold based discrete cosine transform and ASCII encoding for ECG data compression with its inherent encryption. Australas Phys Eng Sci Med 2016;39:833–55.
  • [21] Pak C, Huang L. A new color image encryption using combination of the 1D chaotic map. Signal Process 2017;138:129–37.
  • [22] Kocarev L, Jakimoski G. Logistic map as a block encryption algorithm. Phys Lett Sect A Gen At Solid State Phys 2001;289:199–206.
  • [23] Pisarchik AN, Zanin M. Image encryption with chaotically coupled chaotic maps. Phys D Nonlinear Phenom 2008;237:2638–48.
  • [24] Lee S, Kim J, Lee M. A real-time ECG data compression and transmission algorithm for an e-health device. IEEE Trans Biomed Eng 2011;58:2448–55. http://dx.doi.org/10.1109/TBME.2011.2156794.
  • [25] Blanco-velasco M, Cruz-rold F, Godino-llorente JI, Armiens- aparicio C, Francisco L. On the use of PRD and CR parameters for ECG compression 2005;27:798–802. http://dx.doi.org/10.1016/j.medengphy.2005.02.007.
  • [26] Alshamali A, Al-Fahoum AS. Comments on ‘‘An efficient coding algorithm for the compression of ECG signals using the wavelet transform’’. IEEE Trans Biomed Eng 2003;50:1034–7. http://dx.doi.org/10.1109/TBME.2003.814531.
  • [27] Chen S-TT, Guo Y-JJ, Huang H-NN, Kung W-MM, Tseng K-KK, Tu S-YY. Hiding patients confidential data in the ECG signal viaa transform-domain quantization scheme. J Med Syst 2014;38:54.
  • [28] Pandey A, Saini BS, Singh B, Sood N. A 2D electrocardiogram data compression method using a sample entropy-based complexity sorting approach. Comput Electr Eng 2016;56:30–45.
  • [29] Al-fahoum AS. Quality assessment of ECG compression techniques using a wavelet-based diagnostic measure. IEEE Trans Inf Technol Biomed 2006;10:182–91.
  • [30] Manikandan MS, Dandapat S. Wavelet energy based diagnostic distortion measure for ECG. Biomed Signal Process Control 2007;2:80–96.
  • [31] Rukhin A, Soto J, Nechvatal J, Miles S, Barker E, Leigh S, et al. A statistical test suite for random and pseudorandom number generators for cryptographic applications. Natl Inst Stand Technol 2010;800:131.
  • [32] Gottwald GA, Melbourne I. On the implementation of the 0– 1 test for chaos. SIAM J Appl Dyn Syst 2009;8:129–45.
  • [33] Wu Y, Noonan J, Agaian S. NPCR and UACI randomness tests for image encryption. Cyber J Multidiscip J Sci Technol J Sel Areas Telecommun 2011;31–8.
  • [34] Molinari G, Molinari M, Di Biase M, Brunetti ND. Telecardiology and its settings of application: an update. J Telemed Telecare 2018;24:373–81. http://dx.doi.org/10.1177/1357633X16689432.
  • [35] Jeng FG, Huang WL, Chen TH. Cryptanalysis and improvement of two hyper-chaos-based image encryption schemes. Signal Process Image Commun 2015;34:45–51. http://dx.doi.org/10.1016/j.image.2015.03.003.
  • [36] Jolfaei A, Wu XW, Muthukkumarasamy V. On the security of permutation-only image encryption schemes. IEEE Trans Inf Forensics Secur 2016;11:235–46. http://dx.doi.org/10.1109/Tifs.2015.2489178.
  • [37] Ferguson N, Schneier B. Introduction to cryptography: principles and applications. 1st ed. 2003.
  • [38] Ibaida A, Khalil I, Al-Shammary D. Embedding patients confidential data in ECG signal for healthcare information systems. 2010 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC'10. 2010. pp. 3891–4. http://dx.doi.org/10.1109/IEMBS.2010.5627671.
  • [39] Tseng KK, He X, Kung WM, Chen ST, Liao M, Huang HN. Wavelet-based watermarking and compression for ECG signals with verification evaluation. Sensors (Switzerland) 2014;14:3721–36. http://dx.doi.org/10.3390/s140203721.
  • [40] Kumar SPP, Raj EB. An enhanced cryptography for ECG steganography to satisfy HIPAA privacy and security regulation for bio-medical datas. Biomed Pharmacol J 2016;9:1087–94.
  • [41] Wang H, Zhang W, Yu N. Protecting patient confidential information based on ECG reversible data hiding. Multimed Tools Appl 2016;75:13733–47. http://dx.doi.org/10.1007/s11042-015-27062.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-baca2852-5314-49b9-a542-b2c6b76017dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.