PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applying the Machine Learning Method to Improve Calibration Quality of Time Domain Reflectometry Measuring Technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the application of the time domain reflectometry (TDR) technique for measuring the moisture of porous building materials used in construction. The work is focused on using the potential of artificial intelligence to improve the quality of TDR measurements through a new approach to the interpretation of data obtained from the TDR readings. Machine learning is a data analysis technique, used nowadays in many scientific disciplines. The authors performed a measurement data analysis using the artificial intelligence algorithms to assess moisture of aerated concrete samples tested with a TDR multimeter using two non-invasive sensors which differ in thickness. Data analysis was carried out using supervised machine learning to analyse a series of reflectograms obtained during the measurement. For the data achieved by the classical and machine learning method interpretation, correlation analysis was conducted to confirm the potential of artificial intelligence to improve the quality of TDR measurement. The summary of the work discusses the obtained analytical results and highlights the effectiveness of moisture assessment using the Gaussian Process Regression method, which allowed achieving a level of 0.2 - 0.3% of the RMSE errors value, which is about 10 times lower than the traditional approach.
Twórcy
  • Department of Water Supply and Wastewater Disposal, Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Department of Water Supply and Wastewater Disposal, Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Department of Technical Informatics, Faculty of Mathematics and Information Technology, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
  • Department of Technical Informatics, Faculty of Mathematics and Information Technology, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
autor
  • Department of Physics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 94901 Nitra, Slovakia
Bibliografia
  • 1. Suchorab Z, Frąc M, Guz Ł, Oszust K, Łagód G, Gryta A., Bilińska-Wielgus N, Czerwiński J. A method for early detection and identification of fungal contamination of building materials using e-nose. PLoS One. 2019; 14(4).
  • 2. Nilsson L. Methods of Measuring Moisture in Building Materials and Structures [Internet]. 2018; 26. Available from: http://link.springer. com/10.1007/978-3-319-74231-1
  • 3. Futa A, Jastrzębska M, Paśnikowska-łukaszuk M, Wośko E, Suchorab Z. Improving the Calibration of Surface TDR Sensors for Moisture Evaluation of Building Materials Using the ANCOVA Method. Adv Sci Technol Res J. 2023; 17(5): 326–36.
  • 4. Ledieu J, De Ridder P, De Clerck P, Dautrebande S. A method of measuring soil moisture by time-domain reflectometry. J Hydrol. 1986; 88(3–4): 319–28.
  • 5. Suchorab Z, Malec A, Sobczuk H, Łagód G, Gorgol I, Łazuka E, et al. Determination of Time Domain Reflectometry Surface Sensors Sensitivity Depending on Geometry and Material Moisture. Sensors. 2022; 22(3).
  • 6. Suchorab Z, Majerek D, Kočí V, Černý R. Time Domain Reflectometry flat sensor for non-invasive monitoring of moisture changes in building materials. Meas J Int Meas Confed. 2020; 165.
  • 7. Suchorab Z. Zastosowanie techniki reflektometrii w domenie czasu do oceny stanu zawilgocenia przegród budowlanych. 2016.
  • 8. Sobczuk H, Suchorab Z. Calibration of TDR instruments for moisture measurement of aerated concrete. In: Monitoring and Modelling the Properties of Soil as Porous Medium. 2005; 158.
  • 9. Suchorab Z, Widomski MK, Łagód G, Barnat- Hunek D, Majerek D. A noninvasive TDR sensor to measure the moisture content of rigid porous materials. Sensors (Switzerland) 2018; 18(11).
  • 10. Topp GC, Davis JL, Annan AP. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour Res. 1980; 16(3): 574–82.
  • 11. Malicki MA, Plagge R, Roth CH. Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. Eur J Soil Sci. 1996; 47(3): 357–66.
  • 12. Ren T, Noborio K, Horton R. Measuring soil water content, electrical conductivity, and thermal properties with a thermo-time domain reflectometry probe. Soil Sci Soc Am J. 1999; 63(3): 450–7.
  • 13. Mastrorilli M, Katerji N, Rana G, Nouna B Ben. Daily actual evapotranspiration measured with TDR technique in Mediterranean conditions. Agric For Meteorol. 1998; 90(1–2) :81–9.
  • 14. Pavlík Z, Mihulka J, Fiala L, Černý R. Application of time-domain reflectometry for measurement of moisture profiles in a drying experiment. Int J Thermophys. 2012; 33(8–9): 1661–73.
  • 15. Verma R, Nagar V, Mahapatra S. Introduction to Supervised Learning. Data Anal Bioinforma A Mach Learn Perspect. 2021; 3–34.
  • 16. Shahi TB, Shrestha A, Neupane A, Guo W. Stock price forecasting with deep learning: A comparative study. Mathematic. 2020; 8(9).
  • 17. Guefrechi S, Jabra M Ben, Ammar A, Koubaa A, Hamam H. Deep learning based detection of COVID-19 from chest X-ray images. Multimed Tools Appl. 2021; 80(21–23): 31803–20.
  • 18. Naser MZ. Deriving temperature-dependent material models for structural steel through artificial intelligence. Constr Build Mater. 2018; 191: 56–68.
  • 19. Alotaibi HF, sinnah ZAB, Obaidullah AJ, Alshahrani SM, Al-fanhrawi HJ, Khan A. Development of mechanistic-artificial intelligence model for simulation of numerical data of water flow in porous materials. Eng Appl Artif Intell. 2023; 126.
  • 20. Achieng KO. Modelling of soil moisture retention curve using machine learning techniques: Artificial and deep neural networks vs support vector regression models. Comput Geosci. 2019; 133.
  • 21. Hong WT, Lee JS, Lee D, Yoon HK. Estimation of bulk electrical conductivity in saline medium with contaminated lead solution through TDR coupled with machine learning. Process Saf Environ Prot. 2022; 161: 58–66.
  • 22. Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science (80-). 2015; 349(6245): 255–60.
  • 23. Shetty SH, Shetty S, Singh C, Rao A. Supervised machine learning: Algorithms and applications. Fundam Methods Mach Deep Learn Algorithms, Tools, Appl. 2022; 1–16.
  • 24. Swetha AM, Santhi B, Brindha GR. Machine learning and deep learning for medical analysis-a case study on heart disease data. Fundam Methods Mach Deep Learn Algorithms, Tools, Appl. 2022; 177–209.
  • 25. Brownlee J, Cristina T, Saeed M. Calculus for ma- chine learning. Machine Learning Mastery,. 2022.
  • 26. Paśnikowska-Łukaszuk M, Wlazło-Ćwiklińska M, Zubrzycki J, Suchorab Z. Comparison of Measurement Possibilities by Non-Invasive Reflectometric Sensors and Invasive Probes. Appl Sci. 2023; 13(1).
  • 27. MATLAB. Regression Learner F [Internet]. 2017; 1–2. Available from: https://in.mathworks.com/ help/stats/regressionlearner-app.html
  • 28. Farayola AM, Hasan AN, Ali A. Efficient photovoltaic mppt system using coarse gaussian support vector machine and artificial neural network techniques. Int J Innov Comput Inf Control. 2018; 14(1): 323–39.
  • 29. Statistics and Machine Learning Toolbox TM [Internet]. Available from: https://www.mathworks.com/ help/stats/understanding-support-vector-machine-regression.html
  • 30. Shan Suthaharan. Machine Learning Models and Algorithms for Big Data Classification. 2016.
  • 31. Deringer VL, Bartók AP, Bernstein N, Wilkins DM, Ceriotti M, Csányi G. Gaussian process regression for materials and molecules. Chem Rev. 2021; 121(16): 10073–141.
  • 32. MathWorks. Gaussian Process Regression Models [Internet]. MathWorks. Available from: https:// la.mathworks.com/help/stats/gaussian-process regression-models.html
  • 33. Domínguez-Niño JM, Bogena HR, Huisman JA, Schilling B, Casadesús J. On the accuracy of factory-calibrated low-cost soil water content sensors. Sensors (Switzerland). 2019; 19(14).
  • 34. Udawatta RP, Anderson SH, Motavalli PP, Garrett HE. Calibration of a water content reflectometer and soil water dynamics for an agroforestry practice. Agrofor Syst. 2011; 82(1): 61–75.
  • 35. Wang J. An Intuitive Tutorial to Gaussian Process Regression. Comput Sci Eng. 2023; 25(4): 4–11
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-babfaf89-a052-434c-adf4-f8673a7d456f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.