Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Rare earth elements (REEs) are regarded as key global strategic metals, and recovering REEs from phosphate ores might constitute an alternative method of acquiring rare earth resources. Svanbergite ores in Sichuan are particular phosphates rocks that contain abundant REEs, which are valuable resources that have not been fully developed and utilized. Consequently, the development of crucial technologies for extracting REEs from svanbergite ores hold strategic and scientific significance. This study employed roasting and phosphoric acid leaching processes to recover REEs from svanbergite ores. Response surface methodology (RSM) was applied to optimize the hydrometallurgical process parameters. This study found that the optimal conditions for REEs recovery were: a roasting temperature 600ºC, a roasting time of 38.72 min, a phosphoric acid concentration of 40%, a leaching liquid/solid mass ratio of 10, a leaching temperature of 75ºC and a leaching time of 70 min, resulting in a maximum predicted REE recovery rate of 83.57%. The experimental values exhibited a high degree of proximity to the predicted values, thereby substantiating the accuracy of the model and validating the plausibility of the optimized solution. Mechanistic analysis revealed that after the roasting process, the crandallite formed new acid-soluble new phases. Following the phosphoric acid leaching process, REEs were present predominantly in the form of REE3+ in the leaching solution, consequently separating the REEs from the svanbergite ores. This study provides a valuable reference for the recovery of REEs from associated rare earth phosphate ores.
Rocznik
Tom
Strony
art. no. 193459
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
- Collage of Mining, Guizhou University, Guiyang 550025, China
- Engineering Research Center for Silicate Solid Waste Resource Utilization of Hebei Province, HeBei GEO University, Shijiazhuang 510000, China
- Hebei Key Laboratory of Green Development of Rock Mineral Materials, HeBei GEO University, Shijiazhuang 510000, China
autor
- Collage of Mining, Guizhou University, Guiyang 550025, China
autor
- North Engineering Design and Research Institute Co., Ltd., Shijiazhuang 510000, China
autor
- Guizhou Tianbao Mineral Resources Consulting Service Co., Ltd., Guiyang 550000, China
autor
- Engineering Research Center for Silicate Solid Waste Resource Utilization of Hebei Province, HeBei GEO University, Shijiazhuang 510000, China
- Hebei Key Laboratory of Green Development of Rock Mineral Materials, HeBei GEO University, Shijiazhuang 510000, China
Bibliografia
- AL-THYABAT, S., ZHANG, P., 2016. Extraction of rare earth elements from upgraded phosphate flotation tailings. Miner. Metal Proc., 33(1), 23-30.
- AMINE, M., ASAFAR, F., BILALI, L., NADIFIYINE, M., 2019. Hydrochloric acid leaching study of rare earth elements from moroccan phosphate. J. Chem-NY., 2019(1), 4675276.
- BATTSENGEL, A., BATNASAN, A., NARANKHUU, A., HAGA, K., SHIBAYAMA, A., 2018. Recovery of light and heavy rare earth element-s from apatite ore using sulphuric acid leaching, solvent extraction and precipitation. Hydrometallurgy, 179, 100-109.
- CETINER, Z., 2003. Experimental investigation of the solubility of the REE phosphate minerals monazite/xenotime and chloride complexation in hydrothermal solutions at 23℃, 50℃, 150℃ and saturated water vapor pressure. University of Idaho. 77−90.
- CETINER, Z., WOOD, S., GAMMONS, C., 2005. The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150℃. Chemical Geology, 217(1-2), 147-169.
- CHENG, J., CHE, L., 2010. The current situation and development trend of rare earth resource extraction in China. Rare Earth, 31(02), 65-69.
- DUAN, Q., SHEN, Z., SHU, L., ZHANG, Y., 1964. Geological characteristics of a phosphorus deposit in Sichuan. Geology in China, 04, 9-16.
- FENG, Q., YANG, W., CHANG, M., WEN, S., LIU, D., 2024. Advances in depressants for flotation separation of Cu-Fe sulfide minerals at low alkalinity: A critical review. Int. J. Miner. Metal Mater., 31, 1–17.
- GROUP, C., 2019. Phosphate rock waste: A potential new source of rare earth elements. Chemical Weekly, 38, 64.
- HAMZAOUI, A., JAMOUSSI, B., M'NIF, A., 2008. Lithium recovery from highly concentrated sol-utions: Response surface methodology (RSM) process parameters optimization. Hydrometallurgy, 90(1), 1-7.
- HUANG, S., 1977. Report on comprehensive utilization test of svanbergite ore in Yanziya section of Qingping phosphate mine, Mianzhu, Sichuan Province (3) - Electric heating method for refining yellow phosphorus, extracting aluminum, and recovering strontium and rare earth test report. Emei Institute of Mineral Resources Comprehensive Utilization.
- HUANG, S., 1985. Discussion on the wet comprehensive utilization of svanbergite ores. Inorganic-Chemicals Industry. 09, 27-31.
- HUANG, S., TANG, X., 1987. Utilization pathways of svanbergite deposits in a certain area of China. Journal of the Chinese Academy of Geological Sciences, 01, 234-239.
- HUANG, X., ZHANG, Y., LI, H., 2011. The current situation and development trend of the development and utilization of rare earth resources in China. Bulletin of National Natural Science Foundation of China, 25(3), 134-137.
- JIN H., WANG H., LI J., MAO X., ZHAO P., 2008. Experimental study on two flotation processes of rare earth-containing phosphate ore in Xinhua, Zhijin. Guiyang: The National Academic Conference on Metallurgical Physical Chemistry in 2008.
- LI, G., 1978. Stage report on the comprehensive evaluation and research of the comprehensive utilization of svanbergite ore in Wangjiaping phosphate mine area, Mianzhu, Sichuan Province. National Geological Data Museum.
- LI, H., ZHANG, J., MAO, R., XIE, F., WANG, L., CHENG, J., 2023. Selective extraction of rare earth elements from florencite rich sedimentary rare earth ore by sulfation. Minerals Engineering, 202, 108294.
- LI, L., ZHANG S., HE, Q., HU, X., 2015. Application of response surface methodology in exper-imental design and optimization. Research and Exploration in Laboratory, 34(08), 41-45.
- LI, Z., XIE, Z., HE, D., DENG, J., ZHAO, H., LI, H., 2021. Simultaneous leaching of rare ear-th elements and phosphorus from a Chinese phosphate ore using H3PO4. Green Process. Synth., 10(1), 258-267.
- LIANG, H., ZHANG, P., JIN, Z., DEPAOLI, D., 2017. Rare-earth leaching from Florida phosphate rock in wet-process phosphoric acid production. Miner. Metal Proc., 34(3), 146-153.
- MA, K., ZHANG, J., DENG, Q., MEN, P., ZHANG, Y., SHI, X., 2022. Study on REE occurrence in a svanbergite and basic ore characteristics. Physicochem, Probl. Miner. Process., 58(3), 147377.
- MONIR, M., NABAWIA, A., MOHAMMED A., 1999. Recovery of lanthanides from Abu Tartur phosphate rock, Egypt. Hydrometallurgy. 52(2), 199-206.
- RLOAND, G., THOMAS, H., HARALD, S., and DIETRICH, 2000. Compounds of the crandallite: materials from the earth on its way to technical applications. Earth Science Frontiers. 7(002), 485-497.
- SALEHI, S., NOAPARAST, M., SHAFAEI, S., AMINI, A., HEIDARNIA, A., 2015. Iron leaching from bauxite ore in hydrochloric acid using response surface methodology. Journal of Mining and Environment, 6(1), 103-108.
- SUN, S., 1966. Strontium aluminite phosphate sulfur and calcium bearing in sedimentary rocks. Chin. J. Geol., 7(1), 22-31.
- TANG, X., WANG, H., BAI, X., ZHANG, Y., 1982. Semi-industrial test of alkaline medium flotation of svanbergite ore. Multipurpose utilization of uineral resources. 04, 3-12.
- WANG, J., 1991. Processing and utilization of some low quality phosphate ores abroad. Multipurpose Utilization of Mineral Resources., 06, 17-23.
- WANG, S., JIANG B., LU R., 1986. Calcination effect and agricultural evaluation of svanbergite ore in Sichuan. Acta. Pedol. Sin., 23(4), 321-329.
- WANG, S., XIA, P., 1988. Study on the use of svanbergite as phosphorus fertilizer. Soil and Fertilizers. 01, 5-9.
- WANG S., 2018. Basic theory and process research on extraction of associated rare earths from phosphate ores. Northeastern University.
- WENG, Z., JOWITT, S., MUDD, G., HAQUE, N., 2015. A detailed assessment of global rare earth element resources: opportunities and challenges. Econ Geol., 110(8), 1925-1952.
- WU, J., ZHANG, W., JIANG, X., JIN, X., 2015. Experimental study on rare earths separation f-rom Zhijin phosphate rock. Phosphate and Compound Fertilizer, 30(04), 33-34.
- WU, S., WANG, L., ZHAO, L., ZHANG, P., EL-SHALL, H., MOUDGIL, B., HUANG, X., ZHANG, L., 2018. Recovery of rare earth elements from phosphate rock by hydrometallurgical processes–A critical review. Chem Eng. J., 335, 774-800.
- WU, S., ZHAO, L., WANG, L., HUANG, X., DONG, S., FENG, Z., CUI, D., ZHANG, L., 2018. Dissolution behaviors of rare earth elements in phosphoric acid solutions. Nonferrous Met. Soc. China., 28(11), 2375-2382.
- WU, S., ZHAO, L., WANG, L., HUANG, X., CUI, D., 2019. Simultaneous Recovery of Rare Ear-th Elements and Phosphorus from Phosphate rock by Phosphoric Acid Leaching and Selective Precipitation: Towards Green Process. J. Rare Earth, 37(6).
- YU, C., YING, J., LI, J., LI, Y., ZHOU, K., 2008. Research on the production of phosphoric acid with svanbergite ore. Industrial Minerals and Processing., 2, 7-10.
- ZHENG, K., XIA, Y., WEN, X., LIU, Y., 2017. Research progress on enrichment and extraction of rare earth elements from associated rare earth phosphate ores. Conservation and Utilization of Mineral Resources., 05, 93-98.
- ZHANG Q., ZHANG J., CHEN X., HAN J., 2003. Selection of beneficiation process for rare earth-containing phosphate ore in Zhijin, Guizhou. Metal Mine., 03, 23-25.
- ZHANG, Y., ZHANG, J., WU, L., TAN, L., CHENG, J., 2021. Extraction of lithium and aluminium from bauxite mine tailings by mixed acid treatment without roasting. J. Hazard. Mater., 404(Pt B), 124044.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-babcf468-b851-42fe-8a4e-ff9caa7b70e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.