Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Analysis of the cumulative cavitation erosion curvesleads to the inkling that material destruction may be controlled by hardening ab initio, hence one can regards the process runs in hardening regime or may be determined by hardening processes only after some time from the beginning of the erosion, i.e., implying the process proceeds in fatigue dominant regime in the initial stages. Verification of material damage susceptibility on the variations of parameters referring to fatigue strength or material ability to mechanical hardening without changing other parameters is almost unfeasible. The method of resolving the cavitation erosion regime for given material has been proposed. The major role of fatigue strength and hydrogen diffusivity at normal temperature in the process was assumed. The scope of the work covers determining the auxiliary parameter values for selected erosion curves obtained under the ICET Programme and referring them to fatigue strength and hydrogen diffusivity of the materials employed, which led to constituting the classification predictor.
Słowa kluczowe
Rocznik
Tom
Strony
3--15
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Fiszera 14, Poland
- University of Economics, 85-229 Bydgoszcz, Garbary 2, Poland
autor
- University of Economics, 85-229 Bydgoszcz, Garbary 2, Poland
Bibliografia
- [1] Balyts’kyi O.I., Chmiel J., Krause P., Niekrasz J.: Role of hydrogen in the cavitation fracture of 45 steel in lubricating media. Mater. Sci. 45(2009), 5, 651–654.
- [2] Balyts’kyi O.I., Chmiel J., Dorobczyński L.: Analysis of electrochemical oscillations under conditions of vibration cavitation. Mater. Sci. 47(2011), 1, 21–25.
- [3] Heymann F.J.: On the time dependence of the rate of erosion due to impingement or cavitation, erosion by cavitation or impingement. ASTM Spec. Techn. Pub. 408(1967), 70–110.
- [4] Richman R.H., McNaughton W.P.: Correlation of cavitation erosion behaviour with mechanical properties of metals. Wear 140(1990), 1, 63–82.
- [5] Richman R.H., McNaughton W.P.: A metallurgical approach to improved cavitation-erosion resistance. J. Mater. Eng. Perform. 6(1997), 5, 633–641.
- [6] Bedkowski W., Gasiak G., Lachowicz C., Lichtarowicz A., Lagoda T., Macha E.: Relations between cavitation erosion resistance of materials and their fatigue strength under random loading. Wear 230(1999), 2, 201–209.
- [7] Ahmed S.M., Hokkirigawa K., Ito Y., Oba R.: Scanning electron microscopy observation on the incubation period of vibratory cavitation erosion. Wear 142(1991), 2, 303–314.
- [8] Hattori S., Nakao E.: Cavitation erosion mechanisms and quantitative evaluation based on erosion particles. Wear 249(2002), 10-11, 839–845.
- [9] Fortes-Patella R.,Reboud J.L.: A new approach to evaluate the cavitation erosion power. J. Fluid Eng.-T ASME 120(1998), 2, 335–344.
- [10] Giren B.G.: Material proprieties essential for cavitation erosion of laser produced surface alloys. J. Mater. Sci. 39(2004), 1, 295–297.
- [11] Steller J.: International cavitation erosion test and quantitative assessment of material resistance to cavitation. Wear 233-235(1999), 51–64.
- [12] Steller J., Gireń B.G.: International Cavitation Erosion Test. Final Report. Bull. IFFM PAS. 560/1519/2015, Gdańsk 2015.
- [13] Reymann Z., Steller K.: Assessment of material resistance on the action of flow induced cavitation. Transactions IFFM 76(1978), 95–125 (in Polish).
- [14] Hayashi Shin-Ichirou: Measurement of hydrogen diffusivity in aluminum and a dilute alloy by thermal evolution spectroscopy. Jpn. Appl. Phys. 37(1998), 1, 3A, (http://iopscience.iop.org/article/10.1143/JJAP.37.930/pdf).
- [15] Young G.A. Jr., Scully J.R.: The diffusion and trapping of hydrogen in high purity aluminium. Acta Materialia 46(1998), 18, 6337–6349.
- [16] Caskey G.R. Jr, Derrick R.G.: Hydrogen permeability through alpha-brass. Metall. Trans. A, 8(1977), 3, 511–513.
- [17] Lukezich S.J., Wilde B.E.: Corrosion behaviour of nickel-base high performance alloys in simulated repository environments. MS thesis, The Ohio State University, 1989.
- [18] Chene J., Brass A.M.: Interactions Hydrogčne-Métal en relations avec le processus de corrosion souscontrainte. In: Corrosion sous contrainte, phénoménologie et mécanisme (D. Desjardins, R. Oltra, Eds.). Editions de Physique, 1992, 159–210.
- [19] Sakamoto Y., Mantani T.: Effect of quenching and tempering on diffusion of hydrogen in carbon steel. T. Jpn. I. Met. 17(1976), 11, 743–748.
- [20] Palmer Andrew C., King Roger A.: Subsea Pipeline Engineering. PennWell Corp., Tulsa 2008.
- [21] Murakami Y., Kanezaki T., Mine Y., Matsuoka S.: Hydrogen embrittlement nechanism in fatigue of austenitic stainless steels. Metall. Mat. Trans. A, 39(2008), 6, 1327–1339.
- [22] Gdowski C.E., Bullen D.B.: Survey of Degradation Modes of Candidate Materials for HighLevel Radioactive-Waste Disposal Containers, Vol.6 Effects of Hydrogen in Austenitic and Copper-Based Alloys, LLNL, Livermore 1988.
- [23] Magnusson H., Frisk K.: Self-diffusion and impurity diffusion of hydrogen, oxygen, sulphur and phosphorus in copper. Techn. Rep. TR-13-24, Svensk Kärnbränslehantering AB, 2013.
- [24] Ishikawa T., McLelJan R.B.: The diffusivity of hydrogen in copper at low temperatures. J. Phys. Chem. Solids 46(1985), 4, 445–454.
- [25] Sakamoto Y., Takao K.: The electrochemical determination of diffusivity and solubility of hydrogen in copper. T. J. Jpn. I. Met. 46(1982), 3, 285–290.
- [26] Steller J.: Cavitation loading at test rigs used in International Cavitation Erosion Test. IMP PAN Rep. 213/2014, Gdańsk 2014 (in Polish).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-babbb231-8b67-472b-a5be-8df18e617bc5