Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The utilization of mineral wastes from the mining industry is one of the most challenging phases in the raw materials life cycle. In many countries, there are piles of mineral waste materials that date back to the previous century. There is also a constant stream of accompanying mineral matter excavated during everyday mine operations. This stream of waste matter is particularly notable for deep coal mining. Grain size composition of waste mineral matter is one of the most important characteristics of coal originating waste material. This paper presents the use of image analysis for the determination of grain size composition of rock material. Three methods for edge identification have been tested: gradient magnitude, multiscale linear filtering, and Statistical Dominance Algorithm (SDA). Images acquired in laboratory conditions were pre-processed using Gaussian, Median, and Perona-Malik filtration. The image was segmented using a classic watershed algorithm; as a reference, manually segmented images were used. The results show that the SDA algorithm was the best in determining the grain edges. Therefore, the sizes determined after the application of this algorithm were closest to the groundtruth. This method can be used for the assessment of the grain size composition of mineral waste material.
Wydawca
Czasopismo
Rocznik
Tom
Strony
221--229
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- Central Mining Institute, Department of Acoustic, Electronics and IT Solutions, Poland
Bibliografia
- [1] Xia W, Yang J, Zhao Y, Zhu B, Wang Y. Improving floatability of Taixi anthracite coal of mild oxidation by grinding. Physicochem Probl Miner Process 2012;48(2):393-401.
- [2] Xia W, Yang J, Zhu B. Flotation of oxidized coal dry-ground with collector. Powder Technol 2012;228:324-6.
- [3] Gogola K, Bajerski A, Smoliński A. Modyfikacja metody oceny zagrożenia pożarowego na terenach lokowania odpadów powęglowych [Modification of the method for assessing the fire hazards in areas of coal mining wastes locating]. Prace Naukowe GIG. Górnictwo i środowisko. 2012;2:13-32
- [4] Fernlund JMR. Image analysis method for determining 3-D shape of coarse aggregate. Cement Concr Res 2005;35(8): 1629-37.
- [5] Zhang Z, Yang J, Su X, Ding L. Analysis of large particle sizes using a machine vision system. Physicochem Problems Miner Process 2013;49(2):397-405.
- [6] Wang W. Image analysis of aggregates. Comput Geosci 1999; 25(1):71-81.
- [7] Kwan AKH, Mora CF, Chan HC. Particle shape analysis of coarse aggregate using digital image processing. Cement Concr Res 1999;29(9):1403-10.
- [8] Chatterjee S, Bhattacherjee A, Samanta B, Pal SK. Imagebased quality monitoring system of limestone ore grades. Comput Ind 2010;61(5):391-408.
- [9] Tessier J, Duchesne C, Bartolacci G. A machine vision approach to on-line estimation of run-of-mine ore composition on conveyor belts. Miner Eng 2007;20(12): 1129-44.
- [10] EH van den Berg, Meesters AGCA, Kenter JAM, Schlager W. Automated separation of touching grains in digital images of thin sections. Comput Geosci 2002;28(2):179-90.
- [11] Persson A-L. Image analysis of shape and size of fine aggregates. Eng Geol 1998;50(1):177-86.
- [12] Alpana Mohapatra S. Machine learning approach for automated coal characterization using scanned electron microscopic images. Comput Ind 2016;75:35-45.
- [13] Siddiqui F, Shah SMA, Behan MY. Measurement of Size Distribution of Blasted Rock Using Digital Image Processing20; 2009. p. 81-93 (2).
- [14] Zhang Z, Su X, Ding L, Wang Y, others. Multi-scale image segmentation of coal piles on a belt based on the Hessian matrix. Particuology 2013;11(5):549-55.
- [15] Iwaszenko S, Nurzynska K. Rock grains segmentation using curvilinear structures based features. In: Real-Time Image Processing and Deep Learning 2019. International Society for Optics and Photonics; 2019. 109960V.
- [16] Iwaszenko S, Smoliński A. Texture features for bulk rock material grain boundary segmentation. J King Saud Univ Eng Sci 2020. In press.
- [17] Nurzynska K, Iwaszenko S. Application of Texture Features and Machine Learning Methods to Grain Segmentation in Rock Material Images. Image Anal Stereol 2020; 39(2):73-90.
- [18] Beucher S, Lantuéjoul C. Use of watersheds in contour detection. In: Proc. Int. Workshop Image Processing, Real- Time Edge and Motion Detection/Estimation, Rennes, France; 1979. p. 17-21.
- [19] Piórkowski A. A statistical dominance algorithm for edge detection and segmentation of medical images. In: Information Technologies in Medicine. vols. 3-14. Springer; 2016.
- [20] Ketcham DJ, Lowe RW, Weber JW. Image enhancement techniques for cockpit displays. Tech. Rep., HughesAircraft; 1974.
- [21] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 1990;12(7):629-39.
- [22] Koller TM, Gerig G, Szekely G, Dettwiler D. Multiscale detection of curvilinear structures in 2-D and 3-D image data. In: Proceedings, Fifth International Conference on Computer Vision. IEEE.; 1995. p. 864-9.
- [23] Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, et al. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal 1998;2(2):143-68.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-babba888-0445-4342-a47e-a20adc8541a4