PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On a discrete version of Fejér inequality for α-convex sequences without symmetry condition

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, we introduce the notion of α-convex sequences which is a generalization of the convexity concept. For this class of sequences, we establish a discrete version of Fejér inequality without imposing any symmetry condition. In our proof, we use a new approach based on the choice of an appropriate sequence, which is the unique solution to a certain second-order difference equation. Moreover, we obtain a refinement of the standard (right) Fejér inequality for convex sequences.
Wydawca
Rocznik
Strony
art. no. 20240055
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
  • Department of Mathematics, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
autor
  • Department of Mathematics, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
Bibliografia
  • [1] G. Adilov and I. Yesilce, Some important properties of B-convex functions, J. Nonlinear Convex Anal. 19 (2018), 669–680.
  • [2] D. Bertsekas, A. Nedi, and A. Ozdaglar, Convex Analysis and Optimization, Athena Scientific, Belmont, 2003.
  • [3] N. Hadjisavvas, S. Komlosi, and S. Schaible, Handbook of Generalized Convexity and Generalized Monotonicity, Springer-Verlag, Berlin, 2005.
  • [4] C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications. A Contemporary Approach, Springer-Verlag, New York, 2006.
  • [5] J. E. Pečarić, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
  • [6] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973.
  • [7] B. Samet, On an implicit convexity concept and some integral inequalities, J. Inequal. Appl. 308 (2016), 1–16.
  • [8] B. Samet, A convexity concept with respect to a pair of functions, Numer. Funct. Anal. Optim. 43 (2022), 522–540.
  • [9] S. Varosanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303–311.
  • [10] X. M. Yang, A characterization of convex function, Appl. Math. Lett. 13 (2000), 27–30.
  • [11] V. Roomi, H. Afshari, and S. Kalantari, Some existence results for a differential equation and an inclusion of fractional order via (convex) F-contraction mapping, J. Inequal. Appl. 2024 (2024), 28.
  • [12] C. Hermite, Sur deux limites d’une intégrale défine, Mathesis 3 (1983), 1–82.
  • [13] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann, J. Math. Pures Appl. 58 (1893), 171–215.
  • [14] A. Guessab and G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory. 115 (2002), 260–288.
  • [15] A. Guessab and G. Schmeisser, Sharp error estimates for interpolatory approximation on convex polytopes, SIAM J. Numer. Anal. 43 (2005), 909–923.
  • [16] A. Guessab and B. Semisalov, Optimal general Hermite-Hadamard-type inequalities in a ball and their applications in multidimensional numerical integration, Appl. Numer. Math. 170 (2021), 83–108.
  • [17] L. Fejér, Über die Fourierreihen, II, Math. Naturwiss Anz. Ungar. Akad. Wiss. 24 (1906), 369–390.
  • [18] S. Abramovich and L. E. Persson, Fejér and Hermite-Hadamard type inequalities for N -quasiconvex functions, Math. Notes 102 (2017), 599–609.
  • [19] H. Chen and U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl. 446 (2017), 1274–1291.
  • [20] M. R. Delavar and M. De La Sen, A mapping associated to h-convex version of the Hermite-Hadamard inequality with applications, J. Math. Inequal. 14 (2020), 329–335.
  • [21] M. R. Delavar, On Fejér’s inequality: generalizations and applications, J. Inequal. Appl. 2023 (2023), no. 1, 42.
  • [22] S. S. Dragomir, Reverses of the first Hermite-Hadamard type inequality for the square operator modulus in Hilbert spaces, J. Linear Topol. Algebra 11 (2022), 1–13.
  • [23] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998), 91–95.
  • [24] S. S. Dragomir, Y. J. Cho, and S. S. Kim, Inequalities of Hadamard’s type for Lipschitzian mappings and their applications, J. Math. Anal. Appl. 245 (2000), 489–501.
  • [25] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, Melbourne, 2000.
  • [26] R. Jaksić, L. Kvesić, and J. E. Pečarić, On weighted generalization of the Hermite-Hadamard inequality, Math. Inequal. Appl. 18 (2015), 649–665.
  • [27] M. Jleli and B. Samet, On Hermite-Hadamard-type inequalities for subharmonic functions over circular ring domains, Numer. Funct. Anal. Optim. 44 (2023), 1395–1408.
  • [28] C. P. Niculescu, The Hermite-Hadamard inequality for convex functions of a vector variable, Math. Inequal. Appl. 5 (2002), 619–623.
  • [29] C. P. Niculescu and L. E. Persson, Old and new on the Hermite-Hadamard inequality, Real Anal. Exchange 29 (2003), 663–685.
  • [30] M. Z. Sarikaya and H. Budak, On Fejér type inequalities via local fractional integrals, J. Fract. Calc. Appl. 8 (2017), 59–77.
  • [31] T. Szostok, Inequalities of Hermite-Hadamard type for higher order convex functions, revisited, Commun. Pure Appl. Anal. 2 (2021), 903–912.
  • [32] A. Taghavi, V. Darvish, H. M. Nazari, and S. S. Dragomir, Hermite-Hadamard type inequalities for operator geometrically convex functions, Monatsh. Math. 181 (2016), 187–203.
  • [33] S.-H. Wang, New integral inequalities of Hermite-Hadamard type for operator m-convex and ( )α m, -convex functions, J. Comput. Anal. Appl. 22 (2017), 744–753.
  • [34] Sz. Wasowicz, Support-type properties of convex functions of higher order and Hadamard type inequalities, J. Math. Anal. Appl. 332 (2007), 1229–1241.
  • [35] Z. Pavić, The Fejér inequality and its generalizations, Filomat 32 (2018), 5793–5802.
  • [36] Z. Latreuch and B. Belaidi, New inequalities for convex sequences with applications, Int. J. Open Problems Comput. Math. 5 (2012), no. 3, 15–27.
  • [37] A. M. Mercer, Polynomials and convex sequence inequalities, J. Inequal. Pure Appl. Math. 6 (2005), 8.
  • [38] D. S. Mitrinović and P. M. Vasić, Analytic Inequalities, Springer-Verlag, New York, 1970.
  • [39] M. Niezgoda, Sherman, Hermite-Hadamard and Fejér like inequalities for convex sequences and nondecreasing convex functions, Filomat 31 (2017), 2321–2335.
  • [40] S. Wu, The generalization of an inequality for convex sequence, J. Chengdu University (Natural Science) 23 (2004), no. 3, 11–15.
  • [41] S. Wu and H. N. Shi, Majorized proof of inequality for convex sequences, Math. Practice Theory 33 (2003), no. 12, 132–137.
  • [42] V. I. Levin and S. B. Stečkin, Inequalities, Amer. Math. Soc. Transl. 14 (1960), 1–29.
  • [43] F. Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: An update, Contemp. Math. 178 (1994), 71–89.
  • [44] R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. New York Acad. Sci. 576 (1989), 500–534.
  • [45] W.-S. Du, R. P. Agarwal, E. Karapinar, M. Kostić, and J. Cao, Preface to the special issue: A themed issue on mathematical inequalities, analytic combinatorics and related topics in honor of Professor Feng Qi, Axioms 12 (2023), 846.
  • [46] S. K. Panda, R. P. Agarwal, and E. Karapinar, Extended suprametric spaces and Stone-type theorem, AIMS Math. 8 (2023), 23183–23199.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-babb0139-196f-42bb-9c81-95c32d97a274
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.