PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Ordovician seawater composition : evidence from fluid inclusions in halite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fluid inclusions in halite can directly record the major composition of evaporated seawater; however, Ordovician halite is very rare. The Ordovician is a key time during the evolution history because profound changes occurred in the planet’s ecosystems. Marine life was characterized by a major diversification, the Great Ordovician Biodiversification Event and the Late Ordovician Mass Extinction, the first of the “big five” mass extinctions. However, so far there is no data on the Ordovician seawater. Data from the Ordovician-Silurian boundary were available only. In this study, we report the major compositions from Middle Ordovician halite in China to give the exact composition of Ordovician seawater. The basic ion composition (K+, Mg2+, Ca2+, and SO42-) of inclusion brines was established with the use of ultramicrochemical analysis. The data on the chemical composition of the brines in the primary inclusions indicated that the brines were of Na-K-Mg-Ca-Cl (Ca-rich) type, and cover a huge gap in the evolution of seawater chemistry. The chemical composition of the primary inclusion brine in halite confirmed the earlier results for the Cambrian and Silurian halite originating from other salt basins and the previous speculation of “calcite sea” during the Ordovician, indicating a higher potassium content in the Lower Paleozoic seawater than in the seawater of other periods of the Phanerozoic.
Rocznik
Strony
344--352
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
  • Chinese Academy of Sciences, State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Nanjing 210008, China
autor
  • Chinese Academy of Geological Sciences, Institute of Mineral Resources, Beijing 100037, China
  • National Academy of Sciences of Ukraine, Institute of Geology and Geochemistry of Combustible Minerals, Naukowa 3A, 79060 Lviv, Ukraine
autor
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • School of Earth Sciences and Engineering, Nanjing University, State Key Laboratory for Mineral Deposits Research, Institute of Geo-Fluid Research, Nanjing, 210093, China
autor
  • Chinese Academy of Geological Sciences, Institute of Mineral Resources, Beijing 100037, China
autor
  • Chinese Academy of Sciences, Lanzhou Center for Oil and Gas Resources, Institute of Geology and Geophysics, Lanzhou 730000, China
Bibliografia
  • 1. Ayora, C., Cendón, D.I., Taberner, C., Pueyo, J.J., 2001. Brine-mineral reactions in evaporite basins: implications for the composition of ancient oceans. Geology, 29: 251-254.
  • 2. Bao, H.P., Yang, C.Y., Huang, J.S., 2004. “Evaporation drying” and “reinfluxing and redissolving”-a new hypothesis concerning formation of the Ordovician evaporites in eastern Ordos Basin (in Chinese with English summary). Journal of Palaeogeography 6: 279-288.
  • 3. Bein, A., Hovorka, S.D., Fisher, R.S., Roedder, E., 1991. Fluid inclusions in bedded Permian halite, Palo Duro Basin, Texas: evidence for modification of seawater in evaporite brine-pools and subsequent early diagenesis. Journal of Sedimentary Petrology, 61: 1-14.
  • 4. Brennan, S.T., Lowenstein, T.K., 2002. The major-ion composition of Silurian seawater. Geochimica et Cosmochimica Acta, 66: 2683-2700.
  • 5. Brennan, S.T., Lowenstein, T.K., Cendón, D.I., 2013. The major-ion composiion of Cenozoic seawater: the past 36 million years from fluid inclusions in marine halite. American Journal of Science, 313: 713-775.
  • 6. Cendón, D.I., Ayora, C., Pueyo, J.J., Taberner, C., 2003. The geochemical evolution of the Catalan potash subbasin, South Pyrenean Foreland basin (Spain). Chemical Geology, 200: 339-357.
  • 7. Cendón, D.I., Ayora, C., Pueyo, J.J., Taberner, C., Blanc-Valleron, M.-M., 2008. The chemical and hydrological evolution of the Mulhouse potash basin (France): are “marine” ancient evaporites always representative of synchronous seawater chemistry? Chemical Geology, 252: 109-124.
  • 8. Eastoe, C.J., Peryt, T.M., Petrychenko, O.Y., Geisler-Cussey, D., 2007. Stable chlorine isotopes in Phanerozoic evaporites. Applied Geochemistry, 22: 575-588.
  • 9. Eugster, H.P., Harvie, C.E., Weare, J.H., 1980. Mineral equilibria in a six-component seawater system, Na-K-Mg-Ca-SO4-Cl-H2O, at 25°C. Geochimica et Cosmochimica Acta, 44: 1335-1347.
  • 10. Feng, Z.Z., Zhang, Y.S., Jin, Z.K., 1998. Type, origin, and reservoir characteristics of dolostones of the Ordovician Majiagou Group, Ordos, North China platform. Sedimentary Geology, 118: 127-140.
  • 11. Fox, J.S., Videtich, P.E., 1997. Revised estimate of δ34S for marine sulfates from the Upper Ordovician: data from the Williston Basin, North Dakota, USA. Applied Geochemistry, 12: 97-103.
  • 12. Galamay, A.R., Bukowski, K., Czapowski, G., 2003. Chemical composition of brine inclusions in halite from clayeysalt (zuber) facies from the Upper Tertiary (Miocene) evaporite basin (Poland). Journal of Geochemical Exploration, 78-79: 509-511.
  • 13. García-Veigas, J., Ortí, F., Rosell, L., Ayora, C., Rouchy, J.-M., Lugli, S., 1995. The Messinian salt of the Mediterranean: geochemical study of the salt from the Central Sicily Basin and comparison with the Lorca Basin (Spain). Bulletin de la Société Géologique de France, 166: 699-710.
  • 14. García-Veigas, J., Cendón, D.I., Pueyo, J.J., Peryt, T.M., 2011. Zechstein saline brines in Poland, evidence of overturned anoxic ocean during the Late Permian mass extinction event. Chemical Geology, 290: 189-201.
  • 15. García-Veigas, J., Cendón, D.I., Rosell, L., Ortí, F., Torres Ruiz, J., Martín, J.M., Sanz, E., 2013. Salt deposition and brine evolution in the Granada Basin (Late Tortonian, SE Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 369: 452-465.
  • 16. Hardie, L.A., 1996. Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology, 24: 279-283.
  • 17. Horita, J., Zimmermann, H., Holland, H.D., 2002. Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporates. Geochimica et Cosmochimica Acta, 66: 3733-3756.
  • 18. Khmelevska, O., Kovalevych, V., Peryt, T.M., 2000. Changes of seawater compositon in the Triassic-Jurassic time as recorded by fluid inclusions in halite. Journal of Geochemical Exploration, 69-70: 83-86.
  • 19. Klein-BenDavid, O., Sass, E., Katz, A., 2004. The evolution of marine evaporitic brines in inland basins: the Jordan-Dead Sea Rift valley. Geochimica et Cosmochimica Acta, 68: 1763-1775.
  • 20. Kovalevich, V.M., 1990. Halogenesis and chemical evolution ocean in the Phanerozoic (in Russian). Naukova Dumka, Kiev.
  • 21. Kovalevich, V.M., Peryt, T.M., Petrichenko, O.I., 1998. Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. Journal of Geology, 106: 695-712.
  • 22. Kovalevych, V., Vovnyuk, S., 2010. Fluid inclusions in halite from marine salt deposits: are they real micro-droplets of ancient seawater? Geological Quarterly, 54 (4): 401-410.
  • 23. Kovalevych, V., Peryt, T.M., Beer, W., Geluk, M., Hałas, S., 2002. Geochemistry of Early Triassic seawater as indicated by study of the Rot halite in the Netherlands, Germany, and Poland. Chemical Geology, 182: 549-563.
  • 24. Kovalevych, V.M., Carmona, V., Pueyo, J.J., Peryt, T.M., 2005. Ultramicrochemical analyses (UMCA) and Cryogenic Scanning Electron Microscopy (Cryo-SEM-EDS) of brines in halite-hosted fluid inclusions: a comparative study of analytical data. Geochemistry International, 43: 268-276.
  • 25. Kovalevych, V.M., Marshall, T., Peryt, T.M., Petrychenko, O.Y., Zhukova, S.A., 2006a. Chemical composition of seawater in Neoproterozoic: results of fluid inclusion study of halite from Salt Range (Pakistan) and Amadeus Basin (Australia). Precambrian Research, 144: 39-51.
  • 26. Kovalevych, V.M., Peryt, T.M., Zang, W.L., Vovnyuk, S.V., 2006b. Composition of brines in halite-hosted fluid inclusions in the Upper Ordovician, Canning Basin, Western Australia: new data on seawater chemistry. Terra Nova, 18: 95-103.
  • 27. Kovalevych, V., Paul, J., Peryt, T.M., 2009. Fluid inclusions in halite from the Röt (lower triassic) salt deposit in central Germany: evidence for seawater chemistry and conditions of salt deposition and recrystallization. Carbonates and Evaporites, 24: 45-57.
  • 28. Lowenstein, T.K., Timofeeff, M.N., Brennan, S.T., Hardie, L.A., Demicco, R.V., 2001. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science, 294: 1086-1088.
  • 29. Lazar, B., Holland, H.D., 1988. The analysis of fluid inclusions in halite. Geochimica et Cosmochimica Acta, 52: 485-490.
  • 30. Li, R.X., Guzmics, T., Liu, X.J., Xie, G.C., 2011. Migration of immiscible hydrocarbons recorded in calcite-hostedfluid inclusions, Ordos Basin: a case study from Northern China. Russian Geology and Geophysics, 52: 1491-1503.
  • 31. Lu, F., Tan, X., Ma, T., Li, L., Zhao, A., Su, C., Wu, J., Hong, H., 2017. The sedimentary facies characteristics and lithofacies palaeogeography during Middle-Late Cambrian, Sichuan Basin and adjacent area. Petroleum, 3: 212-231.
  • 32. McCaffrey, M.A., Lazar, B., Holland, H.D., 1987. The evaporation path of seawater and the coprecipitation of Br and K with halite. Journal of Sedimentary Petrology, 57: 928-937.
  • 33. Meng, F.W., Galamay, A.R., Yang, C.H., Li, Y.P., Zhuo, Q.G., 2014. The major composition of a middle-late Eocene salt lake in the Yunying depression of Jianghan Basin of Middle China based on analyses of fluid inclusions in halite. Journal of Asian Earth Sciences, 85: 97-105.
  • 34. Petrichenko, O.I., 1973. Methods of study of inclusions in minerals of saline deposits (in Ukrainian: translated in Fluid Inclusions Research COFFI, 12: 214-274, 1979). Naukova Dumka, Kiev.
  • 35. Petrychenko, O.Y. Peryt, T.M., Chechel, E.I., 2005. Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporites. Chemical Geology, 219: 149-161.
  • 36. Porter, S.M., 2007. Seawater chemistry and early carbonate biomineralization. Science, 316: 1302-1302.
  • 37. Ren, Y., Zhong, D., Gao, C., Yang, Q., Xie, R., Jia, L., Jiang, Y., Zhong, N., 2017. Dolomite geochemistry of the Cambrian Longwangmiao Formation, eastern Sichuan Basin: implication for dolomitization and reservoir prediction. Petroleum Research, 2: 64-76.
  • 38. Roedder, E., D'Angelo, W.M., Dorzapf, A.F., Aruscovage, P.J., 1987. Composition of fluid inclusions in Permian salt beds, Palo Duro Basin, Texas, USA. Chemical Geology, 61: 79-90.
  • 39. Ronov, A.B., Khain, V.E., Balukhovsky, A.N., Seslavinsky, K.B., 1980. Quantitative analysis of Phanerozoic sedimentation. Sedimentary Geology, 25: 311-325.
  • 40. Sandberg, P.A., 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305: 19-22.
  • 41. Tan, H.B., Ma, H.Z., Wei, H.Z., Xu, J.X., Li, T.W., 2006. Chlorine, sulfur and oxygen isotopic constraints on ancient evaporite deposit in the Western Tarim Basin, China. Geochemical Journal, 40: 569-577.
  • 42. Wang, B.Q., Al-Aasm, I.S., 2002. Karst-controlled diagenesis and reservoir development; example from the Ordovician main-reservoir carbonate rocks on the eastern margin of the Ordos basin, China. AAPG Bulletin, 86: 1639-1658.
  • 43. Valyashko, M.G., 1956. Geochemistry of bromine in the processes of salt deposition and the use of the bromine content as a genetic and prospecting criterion. Geochemistry (6): 570-589.
  • 44. Valyashko, M.G., 1962. The principle of forming of salt deposits (in Russian). Moscow, MGU.
  • 45. Vengosh, A., Chivas, A.R., McCullonch, M.T., 1989. Direct determination of boron and chlorine isotopes in geological materials by negative thermal-ionization mass spectrometry. Chemical Geology, 79: 333-343.
  • 46. Yang, Y., Li, W., Ma, L., 2005. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos basin: a multicycle cratonic basin in central China. AAPG Bulletin, 89: 255-269.
  • 47. Yao, J.L., Wei, X.L., Zhang, D.F., Wang, S.F., Huang, D.J., Ji, H.K., 2010. Sedimentary microfacies of anhydrite concretion dolomite rock: Take Majiagou Formation Ma5-i3 layer in the eastern Ordos Basin as an example (in Chinese with English summary). Petroleum Exploration and Development, 37: 690-695.
  • 48. Zhang, Y.S., Zhang, C.l., Kang, Q.F., 1997. Inclusion study of masive dolostones of Ordovician Majiaggou Group in Ordos Basin (in Chinese with English abstract). Acta Petrologica Mineralogica, 16: 213-219.
  • 49. Xiao, Y., Zhang, C., 1992. High precision isotopic measurement of chlorine by thermal ionization mass spectrometry of the Cs2Cl+ ion. Iternational Journal of Mass Spectrometry and Ion Processes, 116: 183-192.
  • 50. Xiao, Y., Zhou, Y., Liu, W., 1995. Precise measurement of chlorine isotopes based Cs2Cl+ by thermal ionization mass spectrometry. Analytical Letters, 28: 1295-1300.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-baba5cff-0265-4725-bf9a-855bd7648be5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.