PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Additive manufacturing for health technology applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study we demonstrate an overview about possibilities in using additive manufacturing for tissue engineering and orthopedic prosthesis. We show the possibilities to produce scaffolds by using a low cost commercial stereolithography system under the use of biocompatible hydrogels like Poly(ethylene glycol) diacrylate. We also demonstrate that it is possible to use a low cost selective laser sintering system to produce individual prostheses to support the healing process in many orthopedic issues.
Rocznik
Strony
215--220
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Faculty of Mechanical Engineering, CAE & Engineering Design, University of Applied Sciences Stralsund, Zur Schwedenschanze 15, Stralsund, 18435, Germany
  • Faculty of Mechanical Engineering, CAE & Engineering Design, University of Applied Sciences Stralsund, Zur Schwedenschanze 15, Stralsund, 18435, Germany
autor
  • Faculty of Mechanical Engineering, CAE & Engineering Design, University of Applied Sciences Stralsund, Zur Schwedenschanze 15, Stralsund, 18435, Germany
Bibliografia
  • 1. Skoog, S.A., Goering, P.L. & Narayan, R.J. (2014) Stereolithography in tissue engineering, J Mater Sci: Mater Med, Vol. 25, No. 3, pp. 845–856.
  • 2. Cooke, M. N. (2003), et al., Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth, Journal of biomedical materials research. Part B, Applied biomaterials, Vol. 64, No. 2, pp. 65–69.
  • 3. Vehse, M., Petersen, S. & Seitz, H. (2107) High resolution photo-polymerization technique for fabrication of hydrogel based scaffolds, Biomed. Eng.Biomed. Tech., Vol. 62, No. S1, p 212.
  • 4. Vehse, M. & Seitz, H. (2014) (Micro-) Stereolithography based on Diode Laser Curing (DLC) and its Potential Applications in Tissue Engineering, BiomedTech, Vol. 59, No. S1, pp. 276-278.
  • 5. Priola, A., et al., (1993) Properties of polymeric films obtained from uv cured poly (ethylene glycol) diacrylates, Polymer, Vol. 34, No. 17, pp. 3653–3657.
  • 6. Kalakkunnath, S., et al. (2006), Viscoelastic characteristics of UV polymerized poly (ethylene glycol) diacrylate networks with varying extents of crosslinking, Journal of Polymer Science Part B: Polymer Physics, Vol. 44, No. 15, pp. 2058–2070.
  • 7. Yu-an, J. et al. (2015) Additive Manufacturing of Custom Orthoses and Prostheses - A Review. Procedia CIRP, Vol. 36, pp. 199-204.
  • 8. Mavroidis, C. et al. (2011), Patient specific ankle-foot orthoses using rapid Prototyping, Journal of NeuroEngineering and Rehabilitation, Vol. 8, No. 1 pp. 1-11.
  • 9. Rogers, B. et al. (2007) Advanced Trans-Tibial Socket Fabrication Using Selective Laser Sintering, Prosthetics and Orthotics International, Vol. 31(1), pp. 88-100.
  • 10. Kai C. C. (2000), et al., Facial prosthetic model fabrication using rapid prototyping tools, Integrated Manufacturing Systems, Vol. 11, No. 1, pp. 42-53.
  • 11. Jacobs, P. F. (1992) Rapid Prototyping & Manufacturing - Fundamentals of Stereolithography, 1st ed., Society of Manufacturing Engineers, Ed. Michigan: Dearborn, 5. Print.
  • 12. Kruth, J-P. et al. (2005) Binding mechanisms in selective laser sintering, Rapid Prototyping Journal, Vol. 11, No. 1, pp. 26-36.
  • 13. L. Muraru, L. et al. (2010) SLS nylon 12 characterization through tensile testing and digital image correlation for finite element modelling of foot and ankle-foot orthoses, 21st Solid Freeform Fabrication Symposium, Austin, TX, USA, pp. 828-833.
  • 14. Kozlovsky, K. et al. (2018), Mechanical Properties of Reused Nylon Feedstock for Powder-bed Additive Manufacturing in Orthopedics, Procedia Manufacturing, Volume 26, pp. 826-833
  • 15. Nelson, JA, et al. (2014), Effects of scan direction and orientation on mechanical properties of laser sintered polyamide-12, International Journal of Advanced Design and Manufacturing Technology, Vol. 7, No. 3, pp. 19-25.
  • 16. B. Mellott, M., Searcy, K. & Pishko, M. (2001) Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization. Biomaterials, Vol. 22, pp. 929-941.
  • 17. Wang, J., et al. (2016), Stereolithographic (SLA) 3D printing of oral modified-release dosage forms, International journal of pharmaceutics, Vol. 503, No. 12, pp. 207–212.
  • 18. Rekowska, N., et al. (2008), Thermomechanical properties of PEGDA and its co-polymers, Current Directions in Biomedical Engineering, Vol. 4, No.1, pp. 669-672.
  • 19. Gutsfeld, P. et al. (2016) Orthesen in der Unfallchirurgie. Trauma und Berufskrankheit, Vol. 18, No. 2, pp.116124.
  • 20. Specht, J., Schmitt, M. & Pfeil, J. (2008) Technische Orthopädie – Orthesen und Schutzeinrichtungen, p. 95 Springer-Verlag Berlin Heidelberg.
  • 21. Tosheva, Y. E. et al. (2005); Reverse engineering and rapid prototyping for new orthotic devices, Intelligent Production Machine and System - The 1st Virtual International Conference on Intelligent Production Machines and Systems, pp. 567-572.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bab3c200-4e75-4c0d-a24d-925c43b61b21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.