PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Brushing on Residual Stress and Surface Roughness of EN AW-2024-T3 Aluminum Alloy Joints Welded Using the FSW Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the influence of the brushing process on residual stress and surface roughness of EN AW-2024-T3 aluminum alloy joints welded using the Friction Stir Welding (FSW) method. Butt joints with thicknesses of 2 mm were brushing with using ceramic brush. The aim of the study was to find optimal parameters of the brushing process, which would significantly improve the functional properties of welded joints. The experiments were carried out in two steps. In the first stage of the research, the feed rate was changed in the range f = 40 ÷ 120 mm / min with a constant brushing depth d = 0.5 mm. The roughness decreased from Sa = 5.285 µm for the specimen after welding to Sa = 2.460 µm for the f = 120 mm/min and d = 0.5 mm. The change in the parameters of the brushing process did not have a significant impact on the state of residual stresses. Hence, in the second step, the brushing depth was increased in steps of 0.1 mm. The best properties were obtained for f = 120 mm / min and d = 0.6 mm (variant 6A), where roughness was Sa = 0.443 µm and compressive stresses σ = -118 MPa.
Twórcy
  • Department of Manufacturing Processes and Production Engineering, Rzeszow University of Technology, al. Powstanców Warszawy 8, 35-959 Rzeszów, Poland
autor
  • Department of Manufacturing Processes and Production Engineering, Rzeszow University of Technology, al. Powstanców Warszawy 8, 35-959 Rzeszów, Poland
  • Department of Manufacturing Processes and Production Engineering, Rzeszow University of Technology, al. Powstanców Warszawy 8, 35-959 Rzeszów, Poland
autor
  • Department of Materials Science, Rzeszow University of Technology, al. Powstanców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Smallbone C., Kocak M. Improving global quality of life through optimum use and innovation of welding and joining technologies, Cedex: International Institute of Welding, 2012.
  • 2. Storjohann D., Barabash O.M., David S.A. et al. Fusion and friction stir welding of aluminum-metal-matrix composites. Metallurgical Materials Transactions A 2005; 36(11): 3237–3247. https://doi.org/10.1007/s11661-005-0093-4.
  • 3. Shah S., Tosunoglu S. Friction Stir Welding: Current State of the Art and Future Prospects. Material Science The 16th World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando, Florida 2012; 17–20.
  • 4. Bucior M., Kluz R., Kubit A., Ochał K. Analysis of the Possibilities of Improving the Selected Properties Surface Layer of Butt Joints Made Using the FSW Method. Advances in Science and Technology Research Journal 2020; 14(1): 1–9. https://doi.org/10.12913/22998624/111662.
  • 5. Thakur A., Sharma V., Bhadauria S.S. Investigation of metallurgical characterization and mechanical properties of double-sided friction stir welding of aluminum 6061 T6 alloy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. April 2022. https://doi.org/10.1177/09. 544054221092935a.
  • 6. Forsstrӧm A., Bossuyt S., Yagodzinskyy Y., Tsuzaki K., Hӓnninen H. Strain localization in copper canister FSW welds for spent nuclear fuel disposal. Journal of Nuclear Materials 2019; 532: 347–359. https://doi.org/10.1016/j.jnucmat.2019.06.024.
  • 7. Mira-Aguiar T., Verdera D., Leitão C., Rodrigues D.M. Tool assisted friction welding: A FSW related technique for the linear lap welding of very thin steel plates. Journal of Materials Processing Technology 2016; 238: 73–80. https://doi.org/10.1016/j.jmatprotec.2016.07.006.
  • 8. Muhamad M.R., Jamaludin M.F., Yusof F., Mahmoodian R., Morisada Y., Suga T., Fujii H. Effects of Al-Ni powder addition on dissimilar friction stir welding between AA7075-T6 and 304 L. Materials Science & Engineering Technology 2020; 51(9): 1274–1284. https://doi.org/10.1002/mawe.201900105.
  • 9. Jabraeili R., Jafarian H. R., Khajeh R., Park N., Kim Y., Heidarzadeh A., Eivani A. R. Effect of FSW process parameters on microstructure and mechanical properties of the dissimilar AA2024 Al alloy and 304 stainless steel joints. Materials Science and Engineering: A 2021; 814: 140981. https://doi.org/10.1016/j.msea.2021.140981.
  • 10. Zhang W., Shen Y., Yan Y., Guo R., Guan W., Guo G. Microstructure characterization and mechanical behavior of dissimilar friction stir welded Al/Cu couple with different joint configurations. The International Journal of Advanced Manufacturing Technology 2018; 94: 1021–1030. https://doi.org/10.1007/s00170-017-0961-2.
  • 11. Aliha M.R.M., Kalantari M.H., Ghoreishi S.M.N., Torabi A.R., Etesam S. Mixed mode I/II crack growth investigation for bi-metal FSW aluminum alloy AA7075-T6/pure copper joints. Theoretical and Applied Fracture Mechanics 2019; 103: 102243. https://doi.org/10.1016/j.tafmec.2019.102243.
  • 12. Shehabeldeen T.A., Yin Y., Ji X., Shen X., Zhang Z., Zhou J. Investigation of the microstructure, mechanical properties and fracture mechanisms of dissimilar friction stir welded aluminium /titanium joints. Journal of Materials Research and Technology 2021; 11: 507–518. https://doi.org/10.1016/j.jmrt.2021.01.026.
  • 13. Shankar S., Chattopadhyaya S., Mehta K. P., Vilaça P. Influence of copper plate positioning, zero tool offset, and bed conditions in friction stir welding of dissimilar Al-Cu alloys with different thicknesses. CIRP Journal of Manufacturing Science and Technology 2022; 38: 73–83. https://doi.org/10.1016/j.cirpj.2022.04.001.
  • 14. Venkat Ramana G., Yelamasetti B., Vishnu Vardhan T. Effect of FSW process parameters and tool profile on mechanical properties of AA 5082 and AA 6061 welds. Materials Today: Proceedings 2021; 46: 826–830. https://doi.org/10.1016/j.mat-pr.2020.12.801.
  • 15. Salacinski T., Chmielewski T., Winiarski M., Cacko R, Swiercz R. Roughness of Metal Surface after Finishing using Ceramic Brush Tools. Advances in Materials Science 2018; 18(55): 20–27. https://doi.org/10.1515/adms-2017-0024.
  • 16. Matuszak J. Effect of ceramic brush treatment on the surface quality and edge condition of aluminium alloy after abrasive waterjet machining. Advances in Science and Technology Research Journal 2021; 15(3): 254–263. https://doi.org/10.12913/22998624/140336.
  • 17. Matuszak J., Klonica M., Zagorski I. Effect of Brushing Conditions on Axial Forcesin Ceramic Brush Surface Treatment. In Proceedings of the 2019 IEEE 5-th International Workshop on Metrology for AeroSpace (MetroAero Space); IEEE: Torino, Italy 2019, 644–648.
  • 18. Robitaille B., Provencher P.R., St-Georges L., Brochu M. Mechanical properties of 2024-T3 Al-Clad aluminum FSW lap joints and impact of surface preparation. International Journal of Fatigue 2021; 143: 105979. https://doi.org/10.1016/j.ijfatigue.2020.105979.
  • 19. ASTM B209M‐Standard Specification for Aluminum and Aluminum‐Alloy Sheet and Plate; ASTM International: West Conshohocken, (2014) PA, USA.
  • 20. Bonarski J.T. Measurement and use of the texturestress microstructure characteristics in materials diagnostics. Institute of Metallurgy and Materials Science of the Polish Academy of Sciences. Cracow, 2013. (in Polish).
  • 21. Skrzypek S.J. New possibilities of measuring macro stress of materials using Xray diffraction in the geometry of a constant angle of incidence. Publisher AGH. Cracow 2002. (in Polish).
  • 22. Kłysz S. Basics of strength of materials. Publisher: Technical Institute of Air Forces. Warsaw 2015. (in Polish).
  • 23. EN ISO 4287: 1999. Geometrical product specifications (GPS). Surface texture: Profile method. Terms. definitions and surface texture parameters.
  • 24. Dong W.P., Sullivan P.J., Stout K.J. Comprehensive study of parameters for characterizing three-dimensional surface topography III: Parameters for characterizing amplitude and some functional properties. Wear 1994; 178: 29–43. https://doi.org/10.1016/0043-1648(94)90127-9.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bab3c19a-7ee6-48c3-a963-823f9d6550ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.