Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Sewage sludge is one of the most polluting wastes that affect the environment, which contains organic and inorganic pollutants released into the surroundings. Using non-renewable energy for the engine also releases large amounts of pollutants results from combustion products was other issues to the environment. The decline of non-renewable energy sources, such as natural gas, fossil fuel, and petroleum made the world increase the production of alternative fuels like waste-derived fuels. Recently, biodiesel production developed from edible oil to cover the depilation of non-renewable energy supply. But it has also become a significant challenge for food security. Therefore, finding other potential opportunities for lipid extraction is crucial. Algae and sludge conversion presented by recent studies seem to be a promising method. The paper presents the extraction and optimization of lipids from blended sludge and algae for biodiesel production. The procedure of the study was a characterization of algal and sludge wastes, the extraction of the lipid component by Soxhlet extraction, and the parameters optimization for maximum oil yield obtain. Temperature, extraction time, and solvents were the basic factor affect oil extraction yield. In the optimization 80 temperature, 6hrs time and hexane solvent results in 61% oil extraction yield which maximum point. Algae and wastewater sludge high potential of lipid and can be substitute edible oil supplies for biodiesel production.
Czasopismo
Rocznik
Tom
Strony
203--211
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- School of Chemical Engineering, Jimma University / Jimma Technology Institute, Jimma City, Ethiopia
Bibliografia
- 1. Azizov, T.N., Kochkarev, D.V., Galinska, T.A., 2019. New design concepts for strengthening of continuous reinforced-concrete beams. IOP Conference Series: Materials Science and Engineering, 708(1) DOI: 10.1088/1757-899X/708/1/012040.
- 2. Blikharskyy, Y., Kopiika, N., Selejdak, J., 2020. Non-uniform corrosion of steel rebar and its influence on reinforced concrete elements` reliability. Production Engineering Archives, 26(2), 67-72 DOI: 10.30657/pea.2020.26.14.
- 3. Blikharskyy, Y., Vashkevych, R., Kopiika, N., Bobalo, T., Blikharskyy, Z., 2021. Calculation residual strength of reinforced concrete beams with damages, which occurred during loading. IOP Conference Series: Materials Science and Engineering, 1021(1).
- 4. Bobalo, T., Blikharskyy, Y., Kopiika, N., Volynets, M., 2021. Influence of the Percentage of Reinforcement on the Compressive Forces Loss in Pre-stressed RC Beams Strengthened with a Package of Steel Bars. Lecture notes in civil engineering, 100, 182-191.
- 5. DBN V.2.6-98. 2011. Konstruktsiyi budynkiv i sporud. Betonni ta zalizobetonni konstruktsiyi. Osnovni polozhennia. Kyiv: Minrehionbud Ukrainy, 72. [In Ukranian].
- 6. Dziuba, S.T., Ingaldi, M., Kadlubek, M. 2018. Quality analysis of the steel bars in chosen metallurgical enterprise. Metal 2018 - 27th International Conference on Metallurgy and Materials, Conference Proceedings, 1893–1898.
- 7. Karpiuk, V., Somina, Y., Maistrenko O., 2019. Engineering Method of Calculation of Beam Structures Inclined Sections Based on the Fatigue Fracture Model. Lecture Notes in Civil Engineering, 47, 135-144, DOI: 10.1007/978-3-030-27011-7_17.
- 8. Khmil, R.Y., Tytarenko, R.Y., Blikharskyy, Y.Z., Vegera P.I., 2021a. Improvement of the method of probability evaluation of the failure-free operation of reinforced concrete beams strengthened under load. IOP Conference Series: Materials Science and Engineering, 1021(1).
- 9. Khmil, R., Tytarenko, R., Blikharskyy, Y., Vegera, P., 2021b. The Probabilistic Calculation Model of RC Beams, Strengthened by RC Jacket. Lecture notes in civil engineering, 100, 182-191
- 10. Kos, Ž., Klimenko, Y., 2019. The Development of Prediction Model for Failure Force of Damaged Reinforced-Concrete Slender Columns. Tehnički vjesnik, 26(6), 1635-1641, DOI: 10.17559/TV-20181219093612.
- 11. Kotes, P., Strieska, M., Brodnan, M., 2018. Sensitive analysis of calculation of corrosion rate according to standard approach. IOP Conference Series: Materials Science and Engineering, 385(1), 012031. DOI: 10.1088/1757-899X/385/1/012031.
- 12. Koteš, P., Vavruš, M., Jošt, J., Prokop, J., 2020. Strengthening of concrete column by using the wrapper layer of fibre reinforced concrete. Materials, 12(23), 1-21. DOI: 10.3390/ma13235432.
- 13. Kovalchuk, B., Blikharskyy, Y., Selejdak, J.. Blikharskyy, Z., 2021. Strength of Reinforced Concrete Beams Strengthened Under Loading with Additional Reinforcement with Differe
- 14. Kramarchuk, A., Ilnytskyy, B., Lytvyniak, O., Grabowski, A., 2019. The increase of seismic stability for existing industrial buildings. AIP Conference Proceedings, 2077. DOI: 10.1063/1.5091890.
- 15. Lipiński T. 2017. Roughness of 1.0721 steel after corrosion tests in 20% NaCl. Production Engineering Archives, 15(15), 27-30 DOI: 10.30657/pea.2017.15.07
- 16. Lipiński, T., Ulewicz, R., 2021. The effect of the impurities spaces on the quality of structural steel working at variable loads. Open Engineering, 11(1), 233–238. DOI: 10.1515/eng-2021-0024.
- 17. Nikolić, R.R., Djoković, J.M., Hadzima, B., Ulewicz, R., 2020. Spot-weld service life estimate based on application of the interfacial crack concept y. Materials, 13(13), 1-11, DOI: 10.3390/ma13132976.
- 18. Pavlikov, A., Kochkarev, D., Harkava, O., 2019. Calculation of reinforced concrete members strength by new concept. Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures, 820–827.
- 19. Turba, Y., Solodkyy, S., 2021. Crack Resistance of Concretes Reinforced with Polypropylene Fiber. Lecture Notes in Civil Engineering, 100, 474-481, DOI: 10.1007/978-3-030-57340-9_58.
- 20. Ulewicz, R., Ulewicz, M., 2020. Problems in the Implementation of the Lean Concept in the Construction Industries. Lecture Notes in Civil Engineering, 47, 495-500, DOI: 10.1007/978-3-030-27011-7_63.
- 21. Vatulia, G., Lobiak, A., Chernogil, V., Novikova, M., 2019. Simulation of Performance of CFST Elements Containing Differentiated Profile Tubes Filled with Reinforced Concrete. In Materials Science Forum Trans Tech Publications Ltd., 968, 281-287, DOI: 10.4028/www.scientific.net/MSF.968.281.
- 22. Vatulia, G., Rezunenko, M., Petrenko, D., Rezunenko, S., 2018. Evaluation of the carrying capacity of rectangular steel-concrete columns. Civil and Environmental Engineering, 14(1), 76–83. DOI: 10.2478/cee-2018-0010.
- 23. Vavruš, M., Koteš, P., 2019. Numerical comparison of concrete columns strengthened with layer of fiber concrete and reinforced concrete. Transportation Research Procedia, 40, 920-926.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-baaf0d4d-8d06-40c5-9d9d-969949c4960a