PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sleep-related breathing biomarkers as a predictor of vital functions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Because an average human spends one third of his life asleep, it is apparent that the quality of sleep has an important impact on the overall quality of life. To properly understand the influence of sleep, it is important to know how to detect its disorders such as snoring, wheezing, or sleep apnea. The aim of this study is to investigate the predictive capability of a dual-modality analysis scheme for methods of sleep-related breathing disorders (SRBDs) using biosignals captured during sleep. Two logistic regressions constructed using backward stepwise regression to minimize the Akaike information criterion were extensively considered. To evaluate classification correctness, receiver operating characteristic (ROC) curves were used. The proposed classification methodology was validated with constructed Random Forests methodology. Breathing sounds and electrocardiograms of 15 study subjects with different degrees of SRBD were captured and analyzed. Our results show that the proposed classification model based on selected parameters for both logistic regressions determine the different types of acoustic events during sleep. The ROC curve indicates that selected parameters can distinguish normal versus abnormal events during sleep with high sensitivity and specificity. The percentage of prediction for defined SRBDs is very high. The initial assumption was that the quality of result is growing with the number of parameters included in the model. The best recognition reached is more than 89% of good predictions. Thus, sleep monitoring of breath leads to the diagnosis of vital function disorders. The proposed methodology helps find a way of snoring rehabilitation, makes decisions concerning future treatment, and has an influence on the sleep quality.
Rocznik
Strony
43--49
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Jagiellonian University Medical College, Świętej Anny 12, 31-008 Krakow, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
  • Jagiellonian University Medical College, Świętej Anny 12, 31-008 Krakow, Poland
Bibliografia
  • 1. Hertenstein E, Doerr JP, Riemann D. Sleep disorders. MMW Fortschr Med 2016;158:54–63.
  • 2. Corlateanu A, Pylchenko S, Sircu V, Botnaru V. Predictors of daytime sleepiness in patients with obstructive sleep apnea. Pneumologia 2015;64:21–5.
  • 3. Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Nieto FJ, et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med 2001;163:19–25.
  • 4. Punjabi NM, Welch D, Strohl K. Sleep disorders in regional sleep centers: a national cooperative study Coleman II Study Investigators. Sleep 2000;23:471–80.
  • 5. Magda SL, Mincu RI, Dumitrache-Rujinski S, Cinteza M. The efficiency of continuous positive airway pressure therapy in reducing cardiovascular dysfunction in a patient with arterial hypertension and obstructive sleep apnea. Pneumologia 2015;64:41–4.
  • 6. Javadi HR, Jalilolghadr S, Yazdi Z, Majd ZR. Correlation between obstructive sleep apnea syndrome and cardiac disease severity. Cardiovasc Psychiatry Neurol 2014;631380:1–5.
  • 7. Mahra R, Benjamin EJ, Shahar E, Gottlieb DJ, Nawabit R, Kirchner HL, et al. Association of nocturnal arrhythmias with sleep-disordered breathing: the Sleep Heart Health Study. Am J Respir Crit Care Med 2006;173:910–6.
  • 8. Yamada S, Suzuki H, Kamioka M, Suzuki S, Kamiyama Y, Yoshihisa A, et al. Sleep-disordered breathing increases risk for fatal ventricular arrhythmias in patients with chronic heart failure. Circ J 2013;77:1466–73.
  • 9. Barnes GD, Jackson EA. Sleep apnea and peripheral artery disease: bringing each other out of the shadows. Atherosclerosis 2016;S0021-9150:30303–3.
  • 10. Poupard L, Mathieu M, Goldman M, Chouchou F, Roche F. Multi-modal ECG Holter system for sleep-disordered breathing screening, a validation study. Sleep Breath 2012;16:685–93.
  • 11. Mendez MO, Corthout J, van Huffel S, Matteucci M, Penzel T, Cerutti S, et al. Automatic screening of obstructive sleep apnea from the ECG based on empirical mode decomposition and wavelet analysis. Physiol Meas 2010;31:273–89.
  • 12. Xu Q, Zhang JN, Xiang M, Fu W, Peng Y. Relevance of sleep apnea-associated heart rate variability to morning blood pressure. Zhonghua Yi Xue Za Zhi 2009;89:1815–9.
  • 13. Proniewska K, Malinowski K, Pociask E, Proniewski B. Classification of sleep disordered breathing in the evaluation of acoustic sound in correlation with the ECG signal. Comput Cardiol 2014;41:153–6.
  • 14. Glowacz A. Diagnostics of induction motor based on analysis of acoustic signals with the application of eigenvector method and k-nearest neighbor classifier. Arch Metallurg Mater 2012;57:403–7.
  • 15. Bitter T, Faber L, Hering D, Langer C, Horstkotte D, Oldenburg O. Sleep-disordered breathing in heart failure with normal left ventricular ejection fraction. Eur J Heart Failure 2009;11: 602–8.
  • 16. Bassiri AG, Guilleminault C. Clinical features and evaluation of obstructive sleep apnea-hypopnea syndrome. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. Philadelphia: WB Saunders Co., 2000:869–78.
  • 17. Narkiewicz K, Montano N, Cogliati C, Cogliati C, van de Borne PJH, Dyken ME, et al. Altered cardiovascular variability in obstructive sleep apnea. Circulation 1998;98:1071–7.
  • 18. Duckitt WD, Tuomi SK, Niesler TR. Automatic detection, segmentation and assessment of snoring from ambient acoustic data. Physiol Meas 2006;27:1047–56.
  • 19. Cavusoglu M, Kamasak M, Erogul O, Ciloglu T, Serinagaoglu Y, Akcam T. An efficient method for snore/nonsnore classification of sleep sounds. Physiol Meas 2007;28:841–53.
  • 20. Guilleminault C, Winkle R, Connolly S, Melvin K, Tilkian A. Cyclical variation of the heart rate in sleep apnoea syndrome mechanisms, and usefulness of 24 h electrocardiography as a screening technique. Lancet 1984;21:126–31.
  • 21. Canisius S, Gross TPV, Jerrentrup A, Penzel T, Kesper K. Detection of sleep disordered breathing by automated ECG analysis. 30th Annu Int IEEE EMBS 2008:2602–5.
  • 22. Beck R, Odeh M, Oliven A, Gavriely N. The acoustic properties of snores. Eur Respir J 1995;8:2120–8.
  • 23. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993;39:561–77.
  • 24. Iber C, Redline S, Kaplan Gilpin AM, Quan SF, Zhang L, Gottlieb DJ, et al. Polysomnography performed in the unattended home versus the attended laboratory setting Sleep Heart Health Study methodology. Sleep 2004;27:536–40.
  • 25. Jafarian K, Amineslami M, Hassani K, Navidbakhsh M, Lahiji MN, Doyle DJ. A multi-channel acoustics monitor for perioperative respiratory monitoring: preliminary data. J Clin Monit Comput 2016;30:107–18.
  • 26. Barbosa Pereira C, Yu X, Czaplik M, Rossaint R, Blazek V, Leonhardt S. Remote monitoring of breathing dynamics using infrared thermography. Biomed Opt Express 2015;6:4378–94.
  • 27. Dodet P, Chavez M, Leu-Semenescu S, Golmard JL, Arnulf I. Lucid dreaming in narcolepsy. Sleep 2014;38:487–97.
  • 28. Norman MB, Middleton S, Erskine O, Middleton PG, Wheatley JR, Sullivan CE. Validation of the Sonomat: a contactless monitoring system used for the diagnosis of sleep disordered breathing. Sleep 2014;37:1477–87.
  • 29. Guerrero A, Embid C, Isetta V, Farre R, Duran-Cantolla J, Parra O, et al. Management of sleep apnea without high pretest probability or with comorbidities by three nights of portable sleep monitoring. Sleep 2014;37:1363–73.
  • 30. Penzel T, McNames J, de Chazal P, Raymond B, Murray A, Moody G. Systematic comparison of different algorithms for apnoea detection based on electrocardiogram recordings. Med Biol Eng Comput 2001;40:402–7.
  • 31. Dario C, Delise P, Gubian L, Saccavini C, Brandolino G, Mancin S. Large controlled observational study on remote monitoring of pacemakers and implantable cardiac defibrillators: a clinical, economic, and organizational evaluation. J Med Internet Res 2016;18:e4.
  • 32. Liu Q, Chen YF, Fan SZ, Abbod MF, Shieh JS. Comparison of five different algorithms for EEG signal analysis in artifacts rejection for monitoring depth of anesthesia. Biomed Signal Process Control 2016;25:24–34.
  • 33. Bansal A, Kumar S, Bajpai A, Tiwari VN, Nayak M, Venkatesan S, et al. Remote health monitoring system for detecting cardiac disorders. IET Syst Biol 2015;9:309–14.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-baaca963-bb56-4458-8424-d747d23d45a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.