PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical problems underlying sprite observations of the planned TARANIS satellite mission

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tool for the Analysis of Radiations from lightnings and Sprites (TARANIS) is a French Space Agency’s (CNES) satellite mission planned for launch in 2020. It is designed for investigating phenomena related to thunderstorm activity, transient luminous events (TLEs) and amongst them - red sprites. The satellite is equipped with cameras, photometers, energetic particles detectors, ion probe and electromagnetic sensors of wide frequency spectrum. It will be the most versatile satellite for measuring TLEs ever sent to space. In this article, theories that are fundamental for understanding sprites and sprites-related measurements of TARANIS mission are presented. The current state of sprites phenomenology and their possible generation mechanisms are presented. The article briefly covers streamer discharges, cloud charge structure at the TLE occurrence, electric breakdown of the air and Runaway Relativistic Electron Avalanche (RREA). At the end, TARANIS mission equipment and goals that are related to presented theories are presented.
Słowa kluczowe
Rocznik
Strony
137--164
Opis fizyczny
Bibliogr. 131 poz., rys., tab.
Twórcy
  • Space Research Centre of the Polish Academy of Sciences, Bartycka 18A, 00-716, Warszawa, Poland
Bibliografia
  • Abestrobi. (2008). Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4262250.
  • Aplin K.L., Harrison R.G., and Rycroft M.J. (2008). Investigating earth’s atmospheric electricity: A role model for planetary studies. Space Science Reviews, 137(1-4), 11-27. https://doi.org/10.1007/s11214-008-9372-x
  • Barrington-Leigh C.P., Inan U.S., and Stanley M.A. (2001). Identification of sprites and elves with intensified video and broadband array photometry. Journal of Geophysical Research: Space Physics, 106(A2), 1741–1750. https://doi.org/10.1029/2000JA000073
  • Barrington-Leigh C.P., Inan U.S., Stanley M.A., and Cummer S.A. (1999). Sprites triggered by negative lightning discharges. Geophysical Research Letters, 26(24), 3605-3608. https://doi.org/10.1029/1999GL010692
  • Bell T.F., Pasko V.P., and Inan U.S. (1995). Runaway electrons as a source of red sprites in the mesosphere. Geophysical Research Letters, 22(16), 2127-2130. https://doi.org/10.1029/95GL02239
  • Bell T.F., Reising S.C., and Inan U.S. (1998). Intense continuing currents following positive cloud-to-ground lightning associated with red sprites. Geophysical Research Letters, 25(8), 1285-1288. https://doi.org/10.1029/98GL00734
  • Bethe H. (1930). Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Annalen Der Physik, 397(3), 325-400. https://doi.org/10.1002/andp.19303970303
  • Blanc E., Farges T., Brebion D., Labarthe A., and Melnikov V. (2006). Observations of Sprites From Space At the Nadir: The LSO (Lightning and Sprite Observations) Experiment on Board of the International Space Station. In M. Füllekrug (Ed.), Sprites, Elves and Intense Lightning Discharges (pp. 151-166). https://doi.org/10.1007/1-4020-4629-4_7
  • Blanc E., Farges T., Roche R., Brebion D., Hua T., Labarthe A., and Melnikov V. (2004). Nadir observations of sprites from the International Space Station. Journal of Geophysical Research: Space Physics, 109(A2), 1-8. https://doi.org/10.1029/2003JA009972
  • Blanc E., Le Mer-Dachard F., Ravel K., Sato M., Farges T., Hébert P., … Binet R. (2012). Taranis MCP: a joint instrument for accurate monitoring of transient luminous event in the upper atmosphere. In E. Armandillo, N. Karafolas, and B. Cugny (Eds.), International Conference on Space Optics-ICSO 2012 (Vol. 10564, p. 34). https://doi.org/10.1117/12.2309048
  • Blanc E., Lefeuvre F., Roussel-Dupré R., and Sauvaud J.-A. (2007). TARANIS: A microsatellite project dedicated to the study of impulsive transfers of energy between the Earth atmosphere, the ionosphere, and the magnetosphere. Advances in Space Research, 40(8), 1268-1275. https://doi.org/10.1016/j.asr.2007.06.037
  • Błęcki J., and Mizerski K. (2018). Subtle structure of streamers under conditions resembling those of Transient Luminous Events. Archives of Mechanics, 70(6), 1-16. https://doi.org/10.24423/aom.3009
  • Błęcki J., Parrot M., and Wronowski R. (2009). ELF and VLF signatures of sprites registered onboard the low altitude satellite DEMETER. Annales Geophysicae, 27(6), 2599-2605. https://doi.org/10.5194/angeo-27-2599-2009
  • Boccippio D.J., Goodman S.J., and Heckman S.J. (2002). Regional Differences in Tropical Lightning Distributions. Journal of Applied Meteorology, 39(12), 2231-2248. https://doi.org/10.1175/1520-0450(2001)040<2231:rditld>2.0.co;2
  • Boccippio D.J., Williams E.R., Heckman S.J., Lyons W.A., Baker I.T., and Boldi R. (1995). Sprites, ELF Transients, and Positive Ground Strokes. Science, 269(5227), 1088-1091. https://doi.org/10.1126/science.269.5227.1088
  • Briels T., van Veldhuizen E., and Ebert U. (2008). Positive streamers in air and nitrogen of varying density: Experiments on similarity laws. Journal of Physics D: Applied Physics, 41(23). https://doi.org/10.1088/0022-3727/41/23/234008
  • Bugaev S.P., Litvinov E.A., Mesyats G.A., and Proskurovskii D.I. (1975). Explosive emission of electrons. Uspekhi Fizicheskih Nauk, 115(1), 101. https://doi.org/10.3367/UFNr.0115.197501d.0101
  • Carlson B., Lehtinen N., and Inan U.S. (2008). Runaway relativistic electron avalanche seeding in the Earth’s atmosphere. Journal of Geophysical Research: Space Physics, 113(10), 1-5. https://doi.org/10.1029/2008JA013210
  • Celestin S., Xu W., and Pasko V.P. (2015). Variability in fluence and spectrum of high-energy photon bursts produced by lightning leaders. Journal of Geophysical Research A: Space Physics, 120(12), 10712-10723. https://doi.org/10.1002/2015JA021410
  • Chanrion O., Neubert T., Lundgaard Rasmussen I., Stoltze C., Tcherniak D., Jessen N.C., …Lorenzen M. (2019). The Modular Multispectral Imaging Array (MMIA) of the ASIM Payload on the International Space Station. Space Science Reviews, 215(4). https://doi.org/10.1007/s11214-019-0593-y
  • Chanrion O., Neubert T., Mogensen A., Yair Y., Stendel M., Singh R., and Siingh D. (2017). Profuse activity of blue electrical discharges at the tops of thunderstorms. Geophysical Research Letters, 44(1), 496–503. https://doi.org/10.1002/2016GL071311
  • Chen A.B., Kuo C.L., Lee Y.J., Su H. T., Hsu R. R., Chern J.L., … Lee L.C. (2008). Global distributions and occurrence rates of transient luminous events. Journal of Geophysical Research: Space Physics, 113(8), 1-8. https://doi.org/10.1029/2008JA013101
  • Chern J.-S., Wu A.-M., and Lin S.-F. (2014). Globalization extension of transient luminous events from FORMOSAT-2 observation. Acta Astronautica, 98(5), 64-70. https://doi.org/10.1016/j.actaastro.2014.01.014
  • Christian H.J., Blakeslee R.J., and Goodman S.J. (1989). The detection of lightning from geostationary orbit. Journal of Geophysical Research, 94(D11), 13329. https://doi.org/10.1029/JD094iD11p13329
  • Colman J.J., Roussel-Dupré R., and Triplett L. (2010). Temporally self-similar electron distribution functions in atmospheric breakdown: The thermal runaway regime. Journal of Geophysical Research: Space Physics, 115(A3), n/a-n/a. https://doi.org/10.1029/2009JA014509
  • Connaughton V., Briggs M.S., Xiong S., Dwyer J.R., Hutchins M.L., Grove J.E., … Wilson-Hodge C. (2013). Radio signals from electron beams in terrestrial gamma ray flashes. Journal of Geophysical Research: Space Physics, 118(5), 2313-2320. https://doi.org/10.1029/2012JA018288
  • Cooray V. (2014). The Lightning Flash. In V. Cooray (Ed.), Lightning Protection for People and Property. https://doi.org/10.1007/978-1-4684-6548-8_4
  • Cummer S.A. (1997). Lightning and Ionospheric Remote Sensing Using Vlf / Elf Radio Atmospherics.
  • Cummer S.A. (2003). Current moment in sprite-producing lightning. Journal of Atmospheric and Solar-Terrestrial Physics, 65(5), 499–508. https://doi.org/10.1016/S1364-6826(02)00318-8
  • Cummer S.A., Frey H.U., Mende S.B., Hsu R.R., Su H.T., Chen A.B., … Takahashi Y. (2006). Simultaneous radio and satellite optical measurements of high-altitude sprite current and lightning continuing current. Journal of Geophysical Research: Space Physics, 111(10), 1-6. https://doi.org/10.1029/2006JA011809
  • Cummer S.A., Inan U.S., Bell T.F., and Barrington-Leigh C.P. (1998). ELF radiation produced by electrical currents in sprites. Geophysical Research Letters, 25(8), 1281-1284. https://doi.org/10.1029/98GL50937
  • Cummer S.A., Jaugey N., Li J., Lyons W.A., Nelson T.E., and Gerken E.A. (2006). Submillisecond imaging of sprite development and structure. Geophysical Research Letters, 33(4), 30–33. https://doi.org/10.1029/2005GL024969
  • Cummer S.A., and Stanley M.A. (1999). Submillisecond resolution lightning currents and sprite development: Observations and implications. Geophysical Research Letters, 26(20), 3205-3208. https://doi.org/10.1029/1999GL003635
  • Drüe C., Hauf T., Finke U., Keyn S., and Kreyer O. (2007). Comparison of a SAFIR lightning detection network in northern Germany to the operational BLIDS network. Journal of Geophysical Research, 112(D18), D18114. https://doi.org/10.1029/2006JD007680
  • Dwyer J.R., and Babich L. (2012). Reply to comment by A.V. Gurevich et al. On “Low-energy electron production by relativistic runaway electron avalanches in air”. Journal of Geophysical Research: Space Physics, 117(A4), n/a-n/a. https://doi.org/10.1029/2011JA017487
  • Dwyer J.R., Smith D.M., and Cummer S.A. (2012). High-energy atmospheric physics: Terrestrial gamma-ray flashes and related phenomena. Space Science Reviews, 173(1-4), 133-196. https://doi.org/10.1007/s11214-012-9894-0
  • Dwyer J.R., and Uman M.A. (2014). The physics of lightning. Physics Reports, 534(4), 147-241. https://doi.org/10.1016/j.physrep.2013.09.004
  • Ebert U., Montijn C., Briels T., Hundsdorfer W., Meulenbroek B., Rocco A., and Veldhuizen E.M. van. (2006). The multiscale nature of streamers. Plasma Sources Science and Technology, 15(2), S118-S129. https://doi.org/10.1088/0963-0252/15/2/S14
  • Ebert U., Nijdam S., Li C., Luque A., Briels T., and van Veldhuizen E. (2010). Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning. Journal of Geophysical Research: Space Physics, 115(A7), 1-13. https://doi.org/10.1029/2009ja014867
  • Fishman G.J., Bhat P. N., Mallozzi R., Horack J. M., Koshut T., Kouveliotou C., … Christian H.J. (1994). Discovery of intense gamma-ray flashes of atmospheric origin. Science, 264(5163), 1313-1316. https://doi.org/10.1126/science.264.5163.1313
  • Franz R.C., Nemzek R.J., and Winckler J.R. (1990). Television image of a large upward electrical discharge above a thunderstorm system. Science. https://doi.org/10.1126/science.249.4964.48
  • Friis-Christensen E., Lühr H., and Hulot G. (2006). Swarm: A constellation to study the Earth’s magnetic field. Earth, Planets and Space, 58(4), 351-358. https://doi.org/10.1186/BF03351933
  • Füllekrug M., Hanuise C., and Parrot M. (2011). Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. Atmospheric Chemistry and Physics, 11(2), 667-673. https://doi.org/10.5194/acp-11-667-2011
  • Füllekrug M., Moudry D.R., Dawes G., and Sentman D.D. (2001). Mesospheric sprite current triangulation. Journal of Geophysical Research: Atmospheres, 106(D17), 20189-20194. https://doi.org/10.1029/2001JD900075
  • Füllekrug M., Parrot M., Ash M., Astin I., Williams P., and Talhi R. (2009). Transionospheric attenuation of 100 kHz radio waves inferred from satellite and ground based observations. Geophysical Research Letters, 36(6), 1-5. https://doi.org/10.1029/2008GL036988
  • Füllekrug M., Roussel-Dupré R., Symbalisty E.M.D., Chanrion O., Odzimek A., van der Velde O.A., and Neubert T. (2010). Relativistic runaway breakdown in low-frequency radio. Journal of Geophysical Research: Space Physics, 115(1), 1-10. https://doi.org/10.1029/2009JA014468
  • Füllekrug M., Roussel-Dupré R., Symbalisty E.M.D., Colman J.J., Chanrion O., Soula S., …Neubert T. (2011). Relativistic electron beams above thunderclouds. Atmospheric Chemistry and Physics, 11(15), 7747-7754. https://doi.org/10.5194/acp-11-7747-2011
  • Gerken E.A., and Inan U.S. (2002). A survey of streamer and diffuse glow dynamics observed in sprites using telescopic imagery. Journal of Geophysical Research: Space Physics, 107(A11), 1-12. https://doi.org/10.1029/2002JA009248
  • Gerken E.A., and Inan U.S. (2003). Observations of decameter-scale morphologies in sprites. Journal of Atmospheric and Solar-Terrestrial Physics, 65(5), 567-572. https://doi.org/10.1016/S1364-6826(02)00333-4
  • Gerken E.A., Inan U.S., and Barrington-Leigh C.P. (2000). Telescopic imaging of sprites. Geophysical Research Letters, 27(17), 2637-2640. https://doi.org/10.1029/2000GL000035
  • Gurevich A.V., Milikh G.M., and Roussel-Dupré R. (1992). Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Physics Letters A, 165(5-6), 463-468. https://doi.org/10.1016/0375-9601(92)90348-P
  • Gurevich A.V., and Zybin K.P. (2001). Runaway breakdown and electric discharges in thunderstorms. Uspekhi Fizicheskih Nauk, 171(11), 1177. https://doi.org/10.3367/ufnr.0171.200111b.1177
  • Hess V. (1912). Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Physikalische Zeitschrift 13, 1084-1091.
  • Iudin D.I., Davydenko S.S., Gotlib V.M., Dolgonosov M.S., and Zelenyi L.M. (2018). Physics of lightning: New model approaches and prospects of the satellite observations. Uspekhi Fizicheskih Nauk, 188(08), 850-864. https://doi.org/10.3367/ufnr.2017.04.038221
  • Jacobson A.R., Holzworth R.H., and Shao X.M. (2011). Observations of multi-microsecond VHF pulsetrains in energetic intracloud lightning discharges. Annales Geophysicae, 29(9), 1587-1604. https://doi.org/10.5194/angeo-29-1587-2011
  • Jacobson A.R., and Light T.E.L. (2003). Bimodal radio frequency pulse distribution of intracloud-lightning signals recorded by the FORTE satellite. Journal of Geophysical Research: Atmospheres, 108(D9), n/a-n/a. https://doi.org/10.1029/2002jd002613
  • Jehl A., Farges T., and Blanc E. (2013). Color pictures of sprites from non-dedicated observation on board the International Space Station. Journal of Geophysical Research: Space Physics, 118(1), 454-461. https://doi.org/10.1029/2012JA018144
  • Johnson M.P., and Inan U.S. (2000). Sferic clusters associated with early/Fast VLF events. Geophysical Research Letters, 27(9), 1391-1394. https://doi.org/10.1029/1999GL010757
  • Kammae T., Stenbaek-Nielsen H.C., McHarg M.G., and Haaland R.K. (2012). Diameter-speed relation of sprite streamers. Journal of Physics D: Applied Physics, 45(27). https://doi.org/10.1088/0022-3727/45/27/275203
  • Kochkin P., Lehtinen N., Van Deursen A.P.J., and Østgaard N. (2016). Pilot system development in metre-scale laboratory discharge. Journal of Physics D: Applied Physics, 49(42). https://doi.org/10.1088/0022-3727/49/42/425203
  • Kosar B.C., Liu N., and Rassoul H.K. (2012). Luminosity and propagation characteristics of sprite streamers initiated from small ionospheric disturbances at subbreakdown conditions. Journal of Geophysical Research: Space Physics, 117(8), 1-9. https://doi.org/10.1029/2012JA017632
  • Kosar B.C., Liu N., and Rassoul H.K. (2013). Formation of sprite streamers at subbreakdown conditions from ionospheric inhomogeneities resembling observed sprite halo structures. Geophysical Research Letters, 40(23), 6282-6287. https://doi.org/10.1002/2013GL058294
  • Kudintseva I.G., Nickolaenko A.P., and Hayakawa M. (2010). Transient Electric Field in the Mesosphere above a Γ-shape Lightning Stroke. Surveys in Geophysics, 31(4), 427-448. https://doi.org/10.1007/s10712-010-9095-x
  • Kulak A., Kubisz J., Klucjasz S., Michalec A., Mlynarczyk J., Nieckarz Z., … Zieba S. (2014). Extremely low frequency electromagnetic field measurements at the Hylaty station and methodology of signal analysis. Radio Science, 49(6), 361-370. https://doi.org/10.1002/2014RS005400
  • Lang T.J., Rutledge S.A., and Wiens K.C. (2004). Origins of positive cloud-to-ground lightning flashes in the stratiform region of a mesoscale convective system. Geophysical Research Letters, 31(10). https://doi.org/10.1029/2004GL019823
  • Lefeuvre F., Blanc E., Pinçon J.-L., Roussel-Dupré R., Lawrence D., Sauvaud J.-A., …Lagoutte D. (2008). TARANIS-A Satellite Project Dedicated to the Physics of TLEs and TGFs. Space Science Reviews, 137(1-4), 301-315. https://doi.org/10.1007/s11214-008-9414-4
  • Lefeuvre F., Marshall R.A., Pinçon J.-L., Inan U.S., Lagoutte D., Parrot M., and Berthelier J.J. (2009). On remote sensing of transient luminous events parent lightning discharges by ELF/VLF wave measurements on board a satellite. Journal of Geophysical Research: Space Physics, 114(9), 1-13. https://doi.org/10.1029/2009JA014154
  • Lehtinen N., Walt M., Inan U.S., Bell T.F., and Pasko V.P. (1996). γ-Ray emission produced by a relativistic beam of runaway electrons accelerated by quasi-electrostatic thundercloud fields. Geophysical Research Letters, 23(19), 2645-2648. https://doi.org/10.1029/96GL02573
  • Li J., Cummer S.A., Lyons W.A., and Nelson T.E. (2008). Coordinated analysis of delayed sprites with high-speed images and remote electromagnetic fields. Journal of Geophysical Research Atmospheres, 113(20), 1-11. https://doi.org/10.1029/2008JD010008
  • Liu N., Dwyer J.R., and Cummer S.A. (2017). Elves Accompanying Terrestrial Gamma Ray Flashes. Journal of Geophysical Research: Space Physics, 122(10), 10,563-10,576. https://doi.org/10.1002/2017JA024344
  • Liu N., Dwyer J.R., Stenbaek-Nielsen H.C., and McHarg M.G. (2015). Sprite streamer initiation from natural mesospheric structures. Nature Communications, 6(May), 1-9. https://doi.org/10.1038/ncomms8540
  • Liu N., Kosar B.C., Sadighi S., Dwyer J.R., and Rassoul H.K. (2012). Formation of streamer discharges from an isolated ionization column at subbreakdown conditions. Physical Review Letters, 109(2). https://doi.org/10.1103/PhysRevLett.109.025002
  • Liu N., and Pasko V.P. (2004). Effects of photoionization on propagation and branching of positive and negative streamers in sprites. Journal of Geophysical Research: Space Physics, 109(A4), 1-18. https://doi.org/10.1029/2003JA010064
  • Lu G., Cummer S.A., Li J., Zigoneanu L., Lyons W.A., Stanley M.A., … Samaras T. (2013). Coordinated observations of sprites and in-cloud lightning flash structure. Journal of Geophysical Research Atmospheres, 118(12), 6607-6632. https://doi.org/10.1002/jgrd.50459
  • Luque A., and Ebert U. (2009). Emergence of sprite streamers from screening-ionization waves in the lower ionosphere. Nature Geoscience, 2(11), 757-760. https://doi.org/10.1038/ngeo662
  • Luque A., and Gordillo-Vázquez F.J. (2011). Sprite beads originating from inhomogeneities in the mesospheric electron density. Geophysical Research Letters, 38(4), 1-5. https://doi.org/10.1029/2010GL046403
  • Lyu F., Cummer S.A., Krehbiel P.R., Rison W., Briggs M.S., Cramer E., … Stanbro M. (2018). Very High Frequency Radio Emissions Associated With the Production of Terrestrial Gamma-Ray Flashes. Geophysical Research Letters, 45(4), 2097-2105. https://doi.org/10.1002/2018GL077102
  • Marisaldi M., Fuschino F., Labanti C., Galli M., Longo F., Del Monte E., … Salotti L. (2010). Detection of terrestrial gamma ray flashes up to 40 MeV by the AGILE satellite. Journal of Geophysical Research: Space Physics, 115(A3), n/a-n/a. https://doi.org/10.1029/2009JA014502
  • Marisaldi M., Fuschino F., Tavani M., Dietrich S., Price C., Galli M., … Verrecchia F. (2014). Properties of terrestrial gamma ray flashes detected by AGILE MCAL below 30 MeV. Journal of Geophysical Research: Space Physics, 119, 1337-1355. https://doi.org/10.1002/2013JA019301
  • Marshall R.A., and Inan U.S. (2005). High-speed telescopic imaging of sprites. Geophysical Research Letters, 32(5), 1-4. https://doi.org/10.1029/2004GL021988
  • Marshall T.C., and Stolzenburg M. (2001). Voltages inside and just above thunderstorms. Journal of Geophysical Research: Atmospheres, 106(D5), 4757-4768. https://doi.org/10.1029/2000JD900640
  • Mende S.B., Chang Y.S., Chen A.B., Frey H.U., Fukunishi H., Geller S.P., … Takahashi Y. (2006). SPACECRAFT BASED STUDIES OF TRANSIENT LUMINOUS EVENTS. In M. Fullekrug (Ed.), Sprites, Elves and Intense Lightning Discharges (pp. 123-149). https://doi.org/10.1007/1-4020-4629-4_6
  • Mlynarczyk J., Bór J., Kulak A., Popek M., and Kubisz J. (2015). An unusual sequence of sprites followed by a secondary TLE: An analysis of ELF radio measurements and optical observations. Journal of Geophysical Research: Space Physics, 120(3), 2241-2254. https://doi.org/10.1002/2014JA020780
  • Moss G.D., Pasko V.P., Liu N., and Veronis G. (2006). Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders. Journal of Geophysical Research: Space Physics, 111(2), 1-37. https://doi.org/10.1029/2005JA011350
  • Nag A., and Rakov V.A. (2012). Positive lightning: An overview, new observations, and inferences. 117(January), 1-20. https://doi.org/10.1029/2012JD017545
  • Nagano M., and Watson A.A. (2000). Observations and implications of the ultrahigh-energy cosmic rays. Reviews of Modern Physics, 72(3), 689-732. https://doi.org/10.1103/RevModPhys.72.689
  • Neubert T., Allin T.H., Stenbaek-Nielsen H., and Blanc E. (2001). Sprites Over Europe. Geophysical Research Letters, 28(18), 3585-3588. https://doi.org/10.1029/2001GL013427
  • Neubert T., Østgaard N., Reglero V., Blanc E., Chanrion O., Oxborrow C.A., … Bhanderi D. D.V. (2019). The ASIM Mission on the International Space Station. Space Science Reviews, 215(2). https://doi.org/10.1007/s11214-019-0592-z
  • Neubert T., Rycroft M. J., Farges T., Blanc E., Chanrion O., Arnone E., … Crosby N. (2008). Recent results from studies of electric discharges in the mesosphere. In Surveys in Geophysics (Vol. 29). https://doi.org/10.1007/s10712-008-9043-1
  • Ohkubo A., Fukunishi H., Takahashi Y., and Adachi T. (2005). VLF/ELF sferic evidence for incloud discharge activity producing sprites. Geophysical Research Letters, 32(4), 1-4. https://doi.org/10.1029/2004GL021943
  • Oreshkin E.V., Barengolts S.A., Chaikovsky S.A., and Oreshkin V.I. (2012). Simulation of the runaway electron beam formed in a discharge in air at atmospheric pressure. Physics of Plasmas, 19(4), 043105. https://doi.org/10.1063/1.3695349
  • Østgaard N., Balling J.E., Bjørnsen T., Brauer P., Budtz-Jørgensen C., Bujwan W., … Yang S. (2019). The Modular X- and Gamma-Ray Sensor (MXGS) of the ASIM Payload on the International Space Station. Space Science Reviews, Vol. 215. https://doi.org/10.1007/s11214-018-0573-7
  • Paiva G.S., Pavao A.C., and Bastos C.C. (2009). ‘Seed’ electrons from muon decay for runaway mechanism in the terrestrial gamma ray flash production. Journal of Geophysical Research Atmospheres, 114(3). https://doi.org/10.1029/2008JD010468
  • Parrot M., Berthelier J.J., Lebreton J.P., Treumann R.A., and Rauch J.-L. (2008). DEMETER observations of EM emissions related to thunderstorms. Space Science Reviews, 137(1-4), 511-519. https://doi.org/10.1007/s11214-008-9347-y
  • Parrot M., Sauvaud J.-A., Soula S., Pinçon J.-L., and van der Velde O.A. (2013). Ionospheric density perturbations recorded by DEMETER above intense thunderstorms. Journal of Geophysical Research: Space Physics, 118(8), 5169-5176. https://doi.org/10.1002/jgra.50460
  • Pasko V. P. (2006). Theoretical Modeling of Sprites and Jets. In M. et al Füllekrug (Ed.), Sprites, Elves and Intense Lightning Discharges (pp. 253-311). https://doi.org/10.1007/1-4020-4629-4_12
  • Pasko V.P. (2007). Red sprite discharges in the atmosphere at high altitude: The molecular physics and the similarity with laboratory discharges. Plasma Sources Science and Technology, 16(1), 13-29. https://doi.org/10.1088/0963-0252/16/1/S02
  • Pasko V.P., Inan U.S., Bell T.F., and Reising S.C. (1998). Mechanism of ELF radiation from sprites. Geophysical Research Letters, 25(18), 3493-3496. https://doi.org/10.1029/98GL02631
  • Pasko V.P., Inan U.S., Bell T.F., and Taranenko Y. (1997). Sprites produced by quasielectrostatic heating and ionization in the lower ionosphere. Journal of Geophysical Research A: Space Physics, 102(A3), 4529-4561. https://doi.org/10.1029/96JA03528
  • Pasko V.P., Yair Y., and Kuo C.L. (2012). Lightning related transient luminous events at high altitude in the earth’s atmosphere: Phenomenology, mechanisms and effects. In Space Science Reviews (Vol. 168). https://doi.org/10.1007/s11214-011-9813-9
  • Qin J., Celestin S., and Pasko V.P. (2012). Low frequency electromagnetic radiation from sprite streamers. Geophysical Research Letters, 39(22), 1-5. https://doi.org/10.1029/2012GL053991
  • Raizer Y.P. (1991). Gas Discharge Physics (J. E. Allen, Ed.). https://doi.org/10.1007/978-3-642-61247-3
  • Rakov V.A. (2013). The Physics of Lightning. (April), 701-729. https://doi.org/10.1007/s10712-013-9230-6
  • Rakov V.A., and Uman M.A. (2003). Lightning: Physics and Effects. Cambridge, United Kingdom: Cambridge University Press.
  • Roberts O.J., Fitzpatrick G., Stanbro M., McBreen S., Briggs M.S., Holzworth R.H., … Mailyan B.G. (2018). The First Fermi-GBM Terrestrial Gamma Ray Flash Catalog. Journal of Geophysical Research: Space Physics, 123(5), 4381-4401. https://doi.org/10.1029/2017JA024837
  • Roussel-Dupré R., Symbalisty E.M.D., Taranenko Y., and Yukhimuk V. (1998). Simulations of high-altitude discharges initiated by runaway breakdown. Journal of Atmospheric and Solar-Terrestrial Physics, 60(7-9), 917-940. https://doi.org/10.1016/S1364-6826(98)00028-5
  • Rutheford E. (1911). The Scattering of α and β Particles by Matter and the Structure of the Atom. Philosophical Magazine, 21(6), 669-688.
  • Rycroft M.J., and Odzimek A. (2010). Effects of lightning and sprites on the ionospheric potential, and threshold effects on sprite initiation, obtained using an analog model of the global atmospheric electric circuit. Journal of Geophysical Research: Space Physics, 115(A6), n/a-n/a. https://doi.org/10.1029/2009JA014758
  • São Sabbas F.T., Sentman D.D., Wescott E.M., Pinto O., Mendes O., and Taylor M.J. (2003). Statistical analysis of space-time relationships between sprites and lightning. Journal of Atmospheric and Solar-Terrestrial Physics, 65(5), 525–535. https://doi.org/10.1016/S1364-6826(02)00326-7
  • Sarria D., Lebrun F., Blelly P.L., Chipaux R., Laurent P., Sauvaud J.-A., … Lindsey-Clark M. (2017). TARANIS XGRE and IDEE detection capability of terrestrial gamma-ray flashes and associated electron beams. Geoscientific Instrumentation, Methods and Data Systems, 6(2), 239-256. https://doi.org/10.5194/gi-6-239-2017
  • Sato M., Ushio T., Morimoto T., Kikuchi M., Kikuchi H., Adachi T., … Kawasaki Z.I. (2015). Overview and early results of the global lightning and sprite measurements mission. Journal of Geophysical Research, 120(9), 3822-3851. https://doi.org/10.1002/2014JD022428
  • Sentman D.D., Wescott E.M., Osborne D.L., Hampton D.L., and Heavner M.J. (1995). Preliminary results from the Sprites94 Aircraft Campaign: 1. Red sprites. Geophysical Research Letters, 22(10), 1205-1208. https://doi.org/10.1029/95GL00583
  • Stanley M.A., Brook M., Krehbiel P.R., and Cummer S.A. (2000). Detection of daytime sprites via a unique sprite ELF signature. Geophysical Research Letters, 27(6), 871-874. https://doi.org/10.1029/1999GL010769
  • Stenbaek-Nielsen H.C., Kammae T., McHarg M.G., and Haaland R.K. (2013). High-Speed Observations of Sprite Streamers. Surveys in Geophysics, 34(6), 769-795. https://doi.org/10.1007/s10712-013-9224-4
  • Stenbaek-Nielsen H.C., and McHarg M.G. (2008). High time-resolution sprite imaging: Observations and implications. Journal of Physics D: Applied Physics, 41(23). https://doi.org/10.1088/0022-3727/41/23/234009
  • Stolzenburg M., and Marshall T.C. (2008). Charge Structure and Dynamics in Thunderstorms. (November 2007), 355–372. https://doi.org/10.1007/s11214-008-9338-z
  • Stolzenburg M., Rust W.D., and Marshall T.C. (1998). Electrical structure in thunderstorm convective regions: 3. Synthesis. Journal of Geophysical Research: Atmospheres, 103(D12), 14097-14108. https://doi.org/10.1029/97JD03545
  • Surkov V.V., and Hayakawa M. (2012). Underlying mechanisms of transient luminous events: A review. Annales Geophysicae, 30(8), 1185-1212. https://doi.org/10.5194/angeo-30-1185-2012
  • Taranenko Y., and Roussel-Dupré R. (1996). High altitude discharges and gamma-ray flashes: A manifestation of runaway air breakdown. Geophysical Research Letters, 23(5), 571-574. https://doi.org/10.1029/95GL03502
  • Taylor W.L., and Sao K. (1970). ELF Attenuation Rates and Phase Velocities Observed From Slow-Tail Components of Atmospherics. Radio Science, 5(12), 1453-1460. https://doi.org/10.1029/RS005i012p01453
  • van der Velde O.A., Mika Á., Soula S., Haldoupis C., Neubert T., and Inan U.S. (2006). Observations of the relationship between sprite morphology and in-cloud lightning processes. Journal of Geophysical Research Atmospheres, 111(15), 1-8. https://doi.org/10.1029/2005JD006879
  • Wescott E.M., Sentman D.D., Osborne D.L., Hampton D.L., and Heavner M.J. (1995). Preliminary results from the Sprites94 Aircraft Campaign: 2. Blue jets. Geophysical Research Letters, 22(10), 1209-1212. https://doi.org/10.1029/95GL00582
  • Wescott E.M., Stenbaek-Nielsen H.C., Sentman D.D., Heavner M.J., Moudry D.R., and Sabbas F. T. S. (2001). Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors. Journal of Geophysical Research: Space Physics, 106(A6), 10467-10477. https://doi.org/10.1029/2000ja000182
  • Wilson C.T.R. (1924). Electric Field of a Thundercloud and Some of Its Effects. Proceedings of the Physical Society of London, 37(1), 32D-37D. https://doi.org/10.1088/1478-7814/37/1/314
  • Wilson C.T.R. (1925). The Acceleration of beat-particles in Strong Electric Fields such as those of Thunderclouds. Mathematical Proceedings of the Cambridge Philosophical Society, 22(4), 534-538. https://doi.org/10.1017/S0305004100003236
  • Winckler J.R., Lyons W.A., Nelson T.E., and Nemzek R.J. (1996). New high-resolution groundbased studies of sprites. Journal of Geophysical Research: Atmospheres, 101(D3), 6997-7004. https://doi.org/10.1029/95JD03443
  • Xu W., Celestin S., Pasko V.P., and Marshall R.A. (2017). A novel type of transient luminous event produced by terrestrial gamma-ray flashes. Geophysical Research Letters, 44(5), 2571-2578. https://doi.org/10.1002/2016GL072400
  • Yair Y. (2004). New observations of sprites from the space shuttle. Journal of Geophysical Research, 109(D15), D15201. https://doi.org/10.1029/2003JD004497
  • Yukhimuk V., Roussel-Dupré R., Symbalisty E.M.D., and Taranenko Y. (1998). Optical characteristics of red sprites produced by runaway air breakdown. Journal of Geophysical Research: Atmospheres, 103(D10), 11473-11482. https://doi.org/10.1029/98JD00348
  • Zabotin N.A., and Wright J.W. (2001). Role of meteoric dust in sprite formation. Geophysical Research Letters, 28(13), 2593-2596. https://doi.org/10.1029/2000GL012699
  • Zelenyi L.M., Gurevich A.V., Klimov S.I., Angarov V.N., Batanov O.V., Bogomolov A.V., …Yashin I.V. (2014). The academic Chibis-M microsatellite. Cosmic Research, 52(2), 87-98. https://doi.org/10.1134/s0010952514010110
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-baac545c-8f3d-4cf9-8273-adc88d3ed9fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.