PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Światłoczułe barwniki organiczne o właściwościach luminescencyjnych – teoria i zastosowanie

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Photosensitive organic dyes with luminescent properties – theory and application
Języki publikacji
PL
Abstrakty
PL
Zjawisko fotoluminescencji obejmuje fluorescencję i fosforescencję, które od blisko 180 lat stanowią przedmiot licznych badań i obserwacji naukowych. Jedną z grup związków chemicznych wykazujących zdolność do emisji kwantów światła na drodze wzbudzenia promieniowaniem elektromagnetycznym są barwniki organiczne. Posiadające unikalne właściwości fizykochemiczne, znajdują one zastosowanie w wielu dziedzinach nauki i przemysłu, takich jak elektronika, włókiennictwo czy branża medyczna. Niniejszy przegląd obejmuje opis fizycznych podstaw zjawisk fotoluminescencji wraz z omówieniem budowy i zastosowania wybranych grup organicznych substancji barwiących zaliczanych do fotoluminoforów.
EN
Photoluminescence phenomenon can be divided into fluorescence and phosphorescence which are a subject of research for almost 180 years now. Organic dyes are one of the groups of chemicals which can show the ability to emission of a light quanta as a result of excitation with electromagnetic radiation. Having unique physicochemical properties they can be applied in many industry branches such as electronics, textiles or medicinal technologies. This review focuses on a description of the physical foundations of the photoluminescence phenomenon as well as the structure and applications of selected organic compounds classified as photoluminophores.
Rocznik
Tom
Strony
12--19
Opis fizyczny
Bibliogr. 74 poz., tab., rys.
Twórcy
autor
  • Sieć Badawcza Łukasiewicz – Instytut Metali Nieżelaznych, Centrum Materiałów Proszkowych i Kompozytowych, Gliwice
  • Sieć Badawcza Łukasiewicz – Instytut Inżynierii Materiałów Polimerowych i Barwników, Centrum Farb i Tworzyw, Gliwice
Bibliografia
  • [1] A. Ulises Acuña, F. Amat-Guerri. 2007. “Early history of solution fluorescence: the lignum nephriticum of Nicolás Monardes”. Springer Series on Fluorescence 4: 3–20.
  • [2] Bernard Valeur, N. Berberan-Santos. 2011. “A brief history of fluorescence and phosphorescence before the emergence of quantum theory”. Journal of Chemical Education 88: 731–738.
  • [3] Joseph R. Lakowicz. 2006. “Principles of fluorescence spectroscopy”. Boston: Springer US.
  • [4] Aleksander Jabłoński. 1933. “Efficiency of anti-stokes fluorescence in dyes”. Nature 131: 839–840.
  • [5] Bernard Valeud. 2001. “Molecular fluorescence: principles and applications”. Wiley-VCH Verlag GmbH.
  • [6] Stefan Paszyc. 1992. „Podstawy fotochemii”. Wydawnictwo Naukowe PWN.
  • [7] Krzysztof Pigoń, Z. Ruziewicz. 2018. „Chemia fizyczna”. Wydawnictwo Naukowe PWN.
  • [8] John A. Barltrop, J. D. Coyle. 1987. „Fotochemia: podstawy”. Wydawnictwo Naukowe PWN.
  • [9] Paul Suppan. 1997. „Chemia i światło”. Wydawnictwo Naukowe PWN.
  • [10] Peter Atkins, J. de Paula. 2016. „Chemia fizyczna”. Wydawnictwo Naukowe PWN.
  • [11] Peter So, C. Dong. 2001. “Fluorescence spectrophotometry”. Encyclopedia of Life Sciences.
  • [12] Alfons Kawski. 1992. „Fotoluminescencja roztworów”. Wydawnictwo Naukowe PWN.
  • [13] Roy N. Dsouza, U. Pischel, W. M. Nau. 2011. “Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution”. Chemical Reviews 111: 7941–7980.
  • [14] Robert M. Christie. 2011. “Handbook of textile and industrial dyeing: principles, processes and types of dyes”. Woodhead Publishing.
  • [15] Douglas Magde, G. E. Rojas, P. G. Seybold. 1999. “Solvent dependence of the fluorescence lifetimes of xanthene dyes”. Photochemistry and Photobiology 70: 737–744.
  • [16] Douglas C. Neckers, O. M. Valdes-Aguilera. 1993. “Photochemistry of the xanthene dyes”. John Wiley & Sons.
  • [17] Youjun Yang, J. O. Escobedo, A. Wong, C. M. Schowalter, M. C. Touchy, L. Jiao, W. E. Crowe, F. R. Fronczek, R. M. Strongin. 2005. “A convenient preparation of xanthene dyes”. Journal of Organic Chemistry 70: 6907–6912.
  • [18] Jutta Arden, G. Deltau, V. Huth, U. Kringel, D.Peros, K. H. Drexhage. 1991. “Fluorescence and lasing properties of rhodamine dyes”. Journal of Luminescence 48: 352–358.
  • [19] Kirill Kolmakov, V. N. Belov, J. Bierwagen, C. Ringemann, V. Müller, C. Eggeling, S. W. Hell. 2010. “Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy”. Chemistry - A European Journal 16: 158–166.
  • [20] Ravi Mosurkal, L. Hoke, S. A. Fossey, L. A. Samuelson, J. Kumar, D. Waller, R. A. Gaudiana. 2006. “Synthesis and modeling of acridine dyes as potential photosensitizers for dye-sensitized photovoltaic applications”. Journal of Macromolecular Science 43: 1907–1922.
  • [21] Vijay K. Sharma, P.D. Sahare, R.C. Rastogi, S.K. Ghoshal, D. Mohan. 2003. “Excited state characteristics of acridine dyes: acriflavine and acridine orange”. Spectrochimica Acta 59: 1799–1804.
  • [22] Jonathan L. Vennerstrom, M. T. Makler, C. K. Angerhofer, J. A. Williams. 1995. “Antimalarial dyes revisited: xanthenes, azines, oxazines and thiazines”. Antimicrobial Agents And Chemotherapy 39: 2671–2677.
  • [23] Sneha Kagatikar, D. Sunil. 2019. “Aggregation-induced emission of azines: an up-to-date review”. Journal of Molecular Liquids 292.
  • [24] Arkady A. Karyakin, E. E. Karyakina, H.-L. Schmidt. 1999. “Electropolymerized azines: A new group of electroactive polymers”. Electroanalysis 11: 149–155.
  • [25] Scott Fleming, A. Mills, T. Tuttle. 2011. “Predicting the UV-vis spectra of oxazine dyes”. Beilstein Journal of Organic Chemistry 7: 432–441.
  • [26] Steven Pauff, S. C. Miller. 2011. “Synthesis of near-IR fluorescent oxazine dyes with esterase-labile sulfonate esters”. Organic Letters 13: 6196–6199.
  • [27] Ghanadzadeh Gilani, T. Ghorbanpour, M. Salmanpour. 2013. “Additive effect on the dimer formation of thiazine dyes”. Journal of Molecular Liquids 177: 273–282.
  • [28] Maria Montes De Oca, J. Vara, L. Milla, V. Rivarola, C. S. Ortiz, 2013. “Physicochemical properties and photodynamic activity of novel derivatives of triarylmethane and thiazine”. Archiv der Pharmazie 346: 255–265.
  • [29] Mohamed Ali Al-Haiza, M. S. Mostafa, M. Y. El-Kady. 2003, “Synthesis and biological evaluation of some new coumarin derivatives”. Molecules 8: 275–286.
  • [30] Zohdy M. Nofal, M. I. El-Zahar, S. S. El-Karim. 2000. “Novel coumarin derivatives with expected biological activity”. Molecules 5: 99–113.
  • [31] Hong-Qiang Dong, T.-B. Wei, X.-Q. Ma, Q.-Y. Yang, Y.-F Zhang, Y.-J. Sun, B.-B. Shi, H. Yao, Y.-M. Zhang, Q. Lin. 2020. “1,8-Naphthalimide-based fluorescent chemosensors: recent advances and perspectives”. Journal of Materials Chemistry 8: 13501–13529.
  • [32] Dalius Gudeika. 2020. “A review of investigation on 4-substituted 1,8-naphthalimide derivatives”. Synthetic Metals 262.
  • [33] Chen Li, H. Wonneberger. 2012. “Perylene imides for organic photovoltaics: yesterday, today, and tomorrow”. Advanced Materials 24: 613–636.
  • [34] Christopher Kohl, T. Weil, J. Qu. K. Müllen. 2004. “Towards highly fluorescent and water-soluble perylene dyes”. Chemistry - A European Journal 10: 5297–5310.
  • [35] Alessandro Sanguineti, M. Sassi, R. Turrisi, R. Ruffo, G. Vaccaro, F. Meinardia, L. Beverina. 2013. “High stokes shift perylene dyes for luminescent solar concentrators”. Chemical Communications 49: 1618–1620.
  • [36] Aleksandr Ishchenko. 1991. “Structure and spectral-luminescent properties of polymethine dyes”. Russian Chemical Reviews 60: 865–884.
  • [37] Thomas Gessne, U. Mayer. 2000. “Triarylmethane and diarylmethane dyes”. Ullmann’s Encyclopedia of Industrial Chemistry.
  • [38] Juraj Bujdák, J. Ratulovská, A. Donauerová, H. Bujdáková. 2016. “Hybrid materials based on luminescent alkaloid berberine and saponite”. Journal of Nanoscience and Nanotechnology 16: 7801–7804.
  • [39] Emeka Oguzie. 2005. “Corrosion inhibition of mild steel in hydrochloric acid solution by methylene blue dye”. Materials Letters 59: 1076-1079.
  • [40] Eno Ebenso, E. Oguzie. 2005. “Corrosion inhibition of mild steel in acidic media by some organic dyes”. Materials Letters 59: 2163–2165.
  • [41] Emeka Oguzie, B. Okolue, C. Ogukwe, C. Unaegbu. 2006. “Corrosion inhibition and adsorption behaviour of bismark brown dye on aluminium in sodium hydroxide solution”. Materials Letters 60: 3376–3378.
  • [42] Amitha Rani, B. B. Basu. 2012. “Green Inhibitors for Corrosion Protection ofMetals and Alloys: An Overview”. International Journal of Corrosion 2012.
  • [43] G. Liu, H. G. Wheat. 2009. “Use of a Fluorescent Indicator in Monitoring Underlying Corrosion on Coated Aluminum 2024-T4”. Journal of The Electrochemical Society 156: 160-166.
  • [44] G. S. Dhole, G. Gunasekaran, R. Naik, T. Ghorpade, M. Vinjamur. 2019. “Fluorescence based corrosion detecting epoxy coating”. Progress in Organic Coatings 138.
  • [45] Anita Augustyniak, W. Ming. 2011. “Early detection of aluminum corrosion via “turn-on” fluorescence in smart coatings”. Progress in Organic Coatings 71: 406-412.
  • [46] Kang Deuk Seo, H. M. Song, M. J. Lee, M. Pastore, C. Anselmi, F. De Angelis, M. K. Nazeeruddin, M. Gräetzel, H. K. Kim. 2011. “Coumarin dyes containing low-band-gap chromophores for dye-sensitised solar cells”. Dyes and Pigments 90: 304–310.
  • [47] Ramanaskanda Braveenth, I.-J. Bae, Y. Wang, S. H. Kim, M. Kim, K. Y. Chai. 2018. “Acridine-triphenylamine based hole-transporting and hole-injecting material for highly efficient phosphorescent-based organic light emitting diodes”. Applied Sciences 8.
  • [48] Erika Kozma, W. Mróz, F. Villafiorita-Monteleone, F. Galeotti, A. Andicsová- Eckstein, M.Catellania, C. Botta. 2016. “Perylene diimide derivatives as red and deep red-emitters for fully solution processable OLEDs”. Royal Society of Chemistry Advances 6: 61175–61179.
  • [49] Shuyun Bi, C. Qiao, D. Song, Y. Tian, D. Gao, Y. Sun, H. Zhang. 2006. “Study of interactions of flavonoids with DNA using acridine orange as a fluorescence probe” Sensors and Actuators 119: 199–208.
  • [50] Shoujun Zhu, R. Tian, A. L. Antaris, X. Chen, H. Dai. 2019. “Near-Infrared-II Molecular Dyes for Cancer Imaging and Surgery”. Advanced Materials 31: 1–25.
  • [51] Swati De, S. Das, A. Girigoswami. 2005. “Environmental effects on the aggregation of some xanthene dyes used in lasers”. Spectrochimica Acta 61: 1821–1833.
  • [52] Camila Fabiano de Freitas, D. S. Pellosi, B. Martins Estevão, I. R. Calori, T. M. Tsubone, M. J. Politi, W.Caetano, N. Hioka. 2016. “Nanostructured Polymeric Micelles Carrying Xanthene Dyes for Photodynamic Evaluation”. Photochemistry and Photobiology 92: 790–799.
  • [53] Lama Misba, S. Zaidi, A. U. Khan. 2018. “Efficacy of photodynamic therapy against Streptococcus mutans biofilm: role of singlet oxygen”. Journal of Photochemistry and Photobiology 183: 16–21.
  • [54] Tairine Zara Lopes, F. R. de Moraes, A. C. Tedesco, R. K. Arni, P. Rahal, M. F. Calmon. 2020. “Berberine associated photodynamic therapy promotes autophagy and apoptosis via ROS generation in renal carcinoma cells”. Biomedicine and Pharmacotherapy 123.
  • [55] Hong Zheng, X.-Q. Zhan, Q.-N. Biana, X.-J. Zhang. 2013. “Advances in modifying fluorescein and rhodamine fluorophores as fluorescent chemosensors”. Chemical Communications 49: 429–447.
  • [56] Sayed Derayea, D. M. Nagy, 2018. “Application of a xanthene dye, eosin y, as spectroscopic probe in chemical and pharmaceutical analysis: a review”. Reviews in Analytical Chemistry 37: 1–14.
  • [57] Kunemadihalli Mathada Kotraiah Swamy, S. Eom, Y. Liu, G. Kim, D. Lee, J. Yoon, 2019. “Rhodamine derivatives bearing thiourea groups serve as fluorescent probes for selective detection of ATP in mitochondria and lysosomes”. Sensors and Actuators 281: 350–358.
  • [58] Michela Zuffo, X. Xie, A. Granzhan. 2019. “Strength in numbers: development of a fluorescence sensor array for secondary structures of DNA”. Chemistry - A European Journal 25: 1812–1818.
  • [59] Yongshan Ma, F. Zhang, J. Zhang, T. Jiang, X. Li, J. Wu, H. Ren. 2016. “A watersoluble fluorescent pH probe based on perylene dyes and its application to cell imaging”. Luminescence 31: 102–107.
  • [60] Min Liu, R. Li, Y,Tang, J. Chang, R. Han, S. Zhang, N. Jiang, F. Ma. 2017. “New applications of the acridine orange fluorescence staining method: Screening for circulating tumor cells”. Oncology Letters 13: 2221–2229.
  • [61] Natalia C. Tansil, Y. Li, C. P. Teng, S. Zhang, K. Y. Win, X. Chen, X. Y. Liu, M.-Y. Han. 2011. “Intrinsically colored and luminescent silk”. Advanced Materials 23:1463–1466.
  • [62] Robert M. Christie, K. M. Morgan, M. S. Islam. 2008. “Molecular design and synthesis of N-arylsulfonated coumarin fluorescent dyes and their application to textiles”. Dyes and Pigments 76,: 741–747.
  • [63] Seong-Il Um. 2007. “The synthesis and properties of benzoxazole fluorescent brighteners for application to polyester fibers”. Dyes and Pigments 75:185–188.
  • [64] Khouloud Baatout, F. Saad, A. Baffoun, B. Mahltig, D. Kreher, N. Jaballah, M. Majdoub. 2019. “Luminescent cotton fibers coated with fluorescein dye for anti-counterfeiting applications”. Materials Chemistry and Physics 234: 304–310.
  • [65] Tarek Ayshaa, M. El-Sedik, S. Megied, H. Ibrahim,Y. Youssef, R. Hrdina. 2019. “Synthesis, spectral study and application of solid state fluorescent reactive disperse dyes and their antibacterial activity”. Arabian Journal of Chemistry 12: 225–235.
  • [66] Mahtab Hajiali, J. K. Rad, S. Ghezelsefloo, A. R. Mahdavian. 2020. “Solvent-free and anticounterfeiting fluorescent inks based on epoxy-functionalized polyacrylic nanoparticles modified with Rhodamine B for cellulosic substrates”. Journal of Industrial and Engineering Chemistry 92: 287–296.
  • [67] Lutamyo Nambela, L. V. Haule, Q. Mgani. 2020. “A review on source, chemistry, green synthesis and application of textile colorants”. Journal of Cleaner Production 246.
  • [68] Dyes & Pigments Market Size, Share & Trends Analysis Report By Product (Pigments, Dyes), By Application (Paints & Coatings, Printing Inks, Textiles), By Region (APAC, Europe), And Segment Forecasts, 2021-2028.
  • [69] Toral Shindhal, P. Rakholiya, S.Varjani, A. Pandey, H. H. Ngo, W. Guo, H. Yong, M. J. Taherzadeh. 2021. “A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater”. Bioengineered 12: 70–87.
  • [70] Xinying Zhang, Y.Wu, G. Xiao, Z. Tang, M. Wang, F. Liu, X. Zhu. 2017. “Simultaneous photocatalytic and microbial degradation of dye-containing wastewater by a novel g-C3 N4 -P25 photosynthetic bacteria composite”. Public Library of Science 12.
  • [71] Qiyun Zhang, Q. Lin, X. Zhang, Y.Chen. 2019. “A novel hierarchical stiff carbon foam with graphene-like nanosheet surface as the desired adsorbent for malachite green removal from wastewater”. Environmental Research 179.
  • [72] Mariusz Tomaszewski, G. Cema, S. Ciesielski, D. Łukowiec, A. Ziembińska-Buczyńska. 2019. “Cold anammox process and reduced graphene oxide - Varieties of effects during long-term interaction”. Water Research 156: 71–81.
  • [73] Qingwu Long, Z. Zhang, G. Qi, Z. Wang, Y. Chen, Z.-Q. Liu. 2020. “Fabrication of chitosan nanofiltration membranes by the film casting strategy for effective removal of dyes/salts in textile wastewater”. Sustainable Chemistry and Engineering 8: 2512–2522.
  • [74] Jie Ding, Y. Pan, L. Li, H. Liu, Q. Zhang, G. Gao, B. Pan. 2020. “Synergetic adsorption and electrochemical classified recycling of Cr(VI) and dyes in synthetic dyeing wastewater”. Chemical Engineering Journal 384.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-baabcbb1-b168-4a5a-8775-31fc38a47c87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.