PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of uniform test design in optimizing the flotation reagents of iron anionic reverse flotation circuit

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most iron reserves are low in grade with quartz as the main gangue mineral, and anionic reverse flotation has become the most crucial separation method in the processing plants of iron ore. Thus, a flotation feed sample that is a mixture of low-intensity and high-gradient magnetic separators concentrates was acquired from a processing plant. The sample characterizations with X-ray diffraction (XRD), X-ray fluorescence (XRF), laser particle size analyzer, and mineral liberation analysis (MLA) confirmed that the sample consists of iron oxide as a valuable mineral and quartz as a gangue mineral with adequate liberation degree. In the anionic reverse flotation, the interaction of the flotation reagents with the constituents of the feed makes the flotation a complex system. Thus, the selection and optimization of regent dosages were performed using a uniform experimental design to estimate the optimum separation efficiency. The optimum reagent system was 1.6 kg/Mg starch depressant, 1.0 kg/Mg calcium oxide (lime) activator, and 0.8 kg/Mg TD-II anionic collector. At the optimum, 68.90% iron grade with 92.62% recovery was produced.
Rocznik
Strony
37--49
Opis fizyczny
Bibliogr. 41 poz., rys. kolor.
Twórcy
autor
  • School of Mining Engineering, University of Science and Technology Liaoning, Anshan 114051, China
autor
  • School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255049, China
  • Minerals Technology Department, Central Metallurgical R&D Institute, Helwan, Cairo, 11421, Egypt
Bibliografia
  • CHANDER, S., NAGARAJ, D.R., 2007. Flotation/ Flotation Reagents. Encyclopedia of Separation Science, Reference Module in Chemistry. Molecul. Sci. and Chem. Eng. 1-14.
  • CHEN, L., XIANG, D., 2015. Chapter seven - magnetic techniques for mineral processing. in Progress in Filtration and Separ. 287-324.
  • DE MEDEIROS, A.R.S., BALTAR, C.A.M., 2018. Importance of collector chain length in flotation of fine particles. Miner. Eng. 122, 179–184.
  • FANG, K.T., LIN, D.K.J., 2003. Ch. 4. Uniform experimental designs and their applications in industry. Handbook of Statistics, Elsevier 22, 131-170.
  • FILIPPOV, L.O., FILIPPOV, I.V., SEVEROV, V.V., 2010. The use of collectors mixture in the reverse cationic flotation of magnetite ore: the role of Fe-bearing silicates. Miner. Eng. 23 (2), 91–98.
  • GAO, Y., ZHANG, Y.H., OUYANG, G.Z., 2013. The Anionic Reverse Flotation Orthogonal Experiment for XuanLong Oolitic Hematite after Magnetic Roasting-Magnetic Separation. Adv. Materials Research 826, 130–135.
  • GUO, C., WANG, H., FU, J.G., CHEN, K.D., 2011. Recovery a Refractory Oolitic Hematite by Magnetization Roasting and Magnetic Separation. Adv. Materials Research 361–363, 305–310.
  • GUPTA, A., YAN, D., 2016. Flotation in Mineral Processing Design and Operations (Second Edition). ISBN: 978-0-444-63589-1
  • HOU, Y., SOBHY, A., WANG, Y., 2021. Significance of reagents addition sequence on iron anionic reverse flotation and their adsorption characteristics using QCM-D. Physicochem. Probl. Miner. Process., 57(1), 284-293.
  • KHAYET M., COJOCARU C, ZAKRZEWSKA-TRZNADEL G., 2008. Response surface modeling and optimization In pervaporation. J. Membrane Sci. 321(2), 272-283.
  • KNOP, J., 1924. Diphenylamine as indicator in the titration of iron with dichromate solution. J. Am. Chem. Soc., 46(2), 263–269.
  • KUMAR, D., JAIN, V., RAI, B., 2018. Can carboxymethyl cellulose be used as a selective flocculant for beneficiating aluminarich iron ore slimes? A density functional theory and experimental study. Miner. Eng. 121, 47–54.
  • LAPLANTE, A.R., TOGURI, J.M., SMITH, H.W., 1983. The effect of air flow rate on the kinetics of flotation. Part 1: The transfer of material from the slurry to the froth. Int. J. Miner. Process. 11(3), 203-219.
  • LI, H.M., LI, L.X., YANG, X.Q., CHENG, Y.B., 2015. Types and geological characteristics of iron deposits in China. J. Asian Earth Sci. 103, 2-22.
  • LIMA, N.P., VALADAO, G.E.S., PERES, A.E.C., 2013. Effect of amine and starch dosage on the reverse cationic flotation of an iron ore. Miner. Eng. 45, 180–184.
  • LUBISI, T.P., NHETA, W., NTULI, F., 2018. Optimization of Reverse Cationic Flotation of Low-Grade Iron Oxide from Fluorspar Tails Using Taguchi Method. Arab J. Sci. Eng. 43, 2403–2412.
  • LUO, X., WANG, Y., WEN, S., MA, M., SUN, C., YIN, W., MA, Y., 2016. Effect of carbonate minerals on quartz flotation behavior under conditions of reverse anionic flotation of iron ores. Int. J. Miner. Process. 152, 1–6.
  • MA, X., MARQUES, M., GONTIJO, C., 2011. Comparative studies of reverse cationic/anionic flotation of Vale iron ore. Int. J. Miner. Process. 100(3–4), 179-183. https://doi.org/10.1016/j.minpro.2011.07.001.
  • MONTES, S., MONTES-ATENAS, G., 2005. Hematite floatability mechanism utilizing tetradecylammonium chloride collector. Miner. Eng. 18, 1032-1036.
  • Nakhaei, F., Irannajad, M., 2017. Reagents types in flotation of iron oxide minerals: A review. Mineral Processing and Extractive Metallurgy Review, 39 (2), 89-124.
  • PATTANAIK, A., RAYASAM, V., 2018. Analysis of reverse cationic iron ore fines flotation using RSM-D-optimal design – An approach towards sustainability. Adv. Powder Technol. 29(12), 3404-3414.
  • PATTANAIK, A., VENUGOPAL, R., 2018. Investigation of adsorption mechanism of reagents (surfactants) system and its applicability in iron ore flotation – an overview. Colloid and Interface Sci. Communications, 25, 41-65.
  • QUAST, K., 2017. Literature review on the use of natural products in the flotation of iron oxide ores. Miner. Eng. 108, 12–24.
  • RAVISHANKAR, S., KHOSLA, N., 1995. Selective flocculation of iron oxide from its synthetic mixtures with clays: a comparison of polyacrylic acid and starch polymers. Int. J. Miner. Process. 43(3–4), 235–247.
  • Shrimali, K., Atluri, V., Wang, Y., Bacchuwar, S., Wang, X., Miller, J. D., 2018. The nature of hematite depression with corn starch in the reverse flotation of iron ore. Journal of Colloidal and Interface Science, 524, 337–349.
  • SOBHY, A., WU, Z., TAO, D., 2021, Statistical analysis and optimization of reverse anionic hematite flotation integrated with nanobubbles. Miner. Eng. 163, 106799.
  • SOBHY, A., YAHIA, A., EL HOSINY, F.I., IBRAHIM, S.S., AMIN, R., 2019. Statistical analysis of Egyptian oil shale column flotation. Int. J. Coal Prep. and Util. https://doi.org/10.1080/19392699.2019.1622530
  • TANG, Z.D., GAO, P., HAN, Y.X., GUO, W., 2019. Fluidized bed roasting technology in iron ores dressing in china — a review on equipment development and application prospect. Journal of Min. and Metall., Section B: Metallurgy, 55 (3)B, 295 - 303.
  • TAO, D., WU, Z., SOBHY, A., 2021, Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechnaisms. Powder Technol., 379, 12-25.
  • WANG, Y., KHOSO, S.A., LUO, X., TIAN, M., 2019. Understanding the depression mechanism of citric acid in sodium oleate flotation of Ca2+-activated quartz: Experimental and DFT study. Minerals Engineering, 140, 105878.
  • WANG, Y., MU, J., WANG, J., 2011, Optimization of fermentation technology of hawthorn-pear wine by uniform design and response surface design. Front. Agric. China 5, 407.
  • WEISSEBORN, P., WARREN, L., DUNN, J., 1995. Selective flocculation of ultrafine iron ore. 1. Mechanism of adsorption of starch onto hematite. Colloids Surf., A 99(1), 11–27.
  • XIA, S., LIN, R., SHAN, J., 2016. The application of orthogonal test method in the parameters optimization of PEMFC under steady working condition. Int. J. Hydrogen Energy.
  • YANG H., TANG Q., WANG C., ZHANG J., 2013. Flocculation and flotation response of Rhodococcus erythropolis to pure minerals in hematite ores. Miner. Eng. 45, 67–72.
  • YANG, S., WANG, L., 2018. Structural and functional insights into starches as depressant for hematite flotation. Miner. Eng. 124, 149–157.
  • YE, H., MATSUOKA, I., 1993. Reverse flotation of fine quartz from dickite with oleate. International Journal of Mineral Processing, 40(1-2), 123-136.
  • YIN, W., FU, Y., YAO, J., YANG, B., CAO, S., SUN, Q., 2017. Study on the dispersion mechanism of citric acid on chlorite in hematite reverse flotation system. Minerals 7 (11), 221.
  • YIN, W., WANG, D., DRELICH, J. W., YANG, B., LI, D., ZHU, Z., YAO, J., 2019. Reverse flotation separation of hematite from quartz assisted with magnetic seeding aggregation. Miner. Eng., 105873.
  • YIN, W.-Z., LI, D., LUO, X.-M., YAO, J., SUN, Q.-Y., 2016. Effect and mechanism of siderite on reverse flotation of hematite. Int. J. Miner. Metall. Mater. 23 (4), 373–379.
  • ZHANG, X., GU, X., HAN, Y., PARRA-ÁLVAREZ, N, CLAREMBOUX, V., 2019. Flotation of Iron Ores: A Review. Mineral Processing and Extractive Metallurgy Review, 42(3), 184-212.
  • ZHANG, Y., HE, Y., ZHANG, T., ZHU, X., FENG, Y., ZHANG, G., BAI, X., 2018. Application of Falcon centrifuge In the recycling of electrode materials from spent lithium ion batteries. Journal of Cleaner Prod. doi:10.1016/j.jclepro.2018.08.133
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-baab78e1-e1b2-45c9-8f0d-191512ea35bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.