Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the study was to diagnose the main trends of changes in land cover in selected communes of Polish metropolitan areas. Detailed studies were conducted in deliberately selected housing estates located in the core of metropolitan area (at least one housing estate) and communes located directly at the border of cities and located on the outskirts of metropolitan areas. The examined communes also differed in the quality of natural conditions of agricultural production. The study used LANDSAT 5 TM and RapidEye satellite images from three limited-time registrations (1996/1999, 2011, 2016/2017). On the basis of remote sensing data, changes in land use were specified by presenting them in a graphic form as compilation of numerical maps. The analyses were performed on processed images (colour compositions), which were subjected to supervised classification using the maximum-likelihood technique. The quality control of supervised classification showed accuracy of 89.3% for LANDSAT 5 TM scene analyses and 91.8% for RapidEye images. Kappa coefficient for the discussed classification was: 0.84 (LANDSAT TM) and 0.89 (Rapid Eye). The results obtained for individual metropolitan areas allow to identify the directions of changes (Land Use Change Cover) taking place in them, with consideration to specificity of each of them.
Czasopismo
Rocznik
Tom
Strony
73--101
Opis fizyczny
Bibliogr. 80 poz., rys., tab.
Twórcy
autor
- University of Agriculture in Krakow Department of Agricultural Land Surveying, Cadastre and Photogrammetry ul. Balicka 253a, 30-198 Kraków
Bibliografia
- Abburu S., Golla S.B. 2015. Satellite Image Classification Methods, and Techniques: A Review. International Journal of Computer Applications, 119, 8, 20‒25.
- Ahmad A., Quegan S. 2013. Comparative Analysis of Supervised and Unsupervised Classification on Multispectral Data. Applied Mathematical Sciences, 7, 74, 3681‒3694.
- Alonso W. 1964. Location and Land Use. Harvard University Press. Cambridge, MA, USA.
- Arvor D., Durieux L., Andrés S., Laporte M-A. 2013. Advances in Geographic Object-Based Image Analysis with Ontologies: A review of main contributions and limitations from a remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing, August 2013, 82, 125‒137. https://doi.org/10.1016/j. isprsjprs.2013.05.003
- Bałazy R., Brach M., Bruchwald A., Choromański A., Dmyterko E., Grzegorzewicz T., Kyc P., Łabaj A., Majsterkiewicz K., Neroj B., Okła K., Olenderek H., Olenderek T., Prengel J., Talarczyk A., Wasiak A., Wężyk P., Wiśniewska E., Witosza W., Zajączkowski G. 2013. Geomatyka w Lasach Państwowych. Część II. Poradnik praktyczny. CILP, Warszawa, 390.
- Barredo J.I., Lavalle C., Demicheli L., Kasanko M., McCormick N. 2003. Sustainable urban and regional planning: The MOLAND activities on urban scenario modelling and forecast. European Commision. Joint Reseach Centre, Institute for Environment and Sustainability. Office for Official Publications of the European Communities, Luxembourg.
- Bauer M.E., Yuan F., Sawaya K.E., Loeffelholz B.C. 2003. Multi-temporal Landsat image classification and change analysis of land cover in the twin cities (Minnesota) metropolitan area. MutiTemp-2003. Second International Workshop on the Analysis of Multi-temporal Remote Sensing Images. July 16‒18, Ispra, Italy.
- Bochenek Z. 2004. Zastosowanie różnych metod określania zmian pokrycia terenu na obszarach miejskich z wykorzystaniem zdjęć satelitarnych. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 14.
- Boldt M., Thiele A., Schulz K. 2012. Object-based Urban Change Detection Analysing High Resolution Optical Satellite Images. SPIE Remote Sensing, Conference on Earth Resources and Environmental Remote Sensing/GIS.
- Bruzzone L., Serpico S.B. 1997. An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images. IEEE Trans. Geosci. Remote Sens., 35, 858‒867.
- Bruzzone L., Prieto D.F. 2000. Automatic analysis of the difference image for unsupervised change detection. IEEE Trans. Geosci. Remote Sens., 38, 1171‒1182.
- Busck A.G., Kristensen S.P., Praestholm S., Reenberg A., Primdahl J. 2006. Land system changes in the context of urbanisation: Examples from the peri-urban area of Greater Copenhagen. Geografisk Tidsskrift-Danish Journal of Geography, 106(2), 21‒34.
- Busko M., Szafranska B. 2018. Analysis of Changes in Land Use Patterns Pursuant to the Conversion of Agricultural Land to Non-Agricultural Use in the Context of the Sustainable Development of the Malopolska Region. Sustainability, 10, 136.
- Call for tenders No ENTR/08/029. 2008. GMES Land Monitoring Core Services Urban Atlas: delivery of land use/cover maps of major European urban agglomerations. Open procedurę specifications. European Commission. Enterprise and Industry Directorate General. http:// ec.europa.eu/enterprise/calls/files/ 08_029/specs.pdf
- Cakir H.I., Khorram S., Nelson S.A.C. 2006. Correspondence analysis for detecting land cover change. Remote Sensing of Environment, 102, 306‒317.
- Carvalho jr. O.A., Guimares R.F., Gillespie A.R., Silva N.C., Gomes R.A. 2011. A new approach to change vector analysis using distance and similarity measures. Remote Sens., 3, 2473‒2493.
- Cegielska K., Noszczyk T., Kukulska A., Szylar M., Hernik J., Dixon-Gough R., Jombach S., Valánszki I., Filepné Kovács K. 2018. Land use and land cover changes in post-socialist countries: Some observations from Hungary and Poland. Land Use Policy, 78, 1‒18.
- Chaba D., Gorzelany-Dziadkowiec M., Gorzelany-Plesińska J., Kardaś A., Kozień E., Krzyk P., Kubica I., Kwoczyńska B., Sławińska N. 2015. Wykorzystanie wybranych metod zarządzania w rozwoju regionalnym. Monografia. UR, Kraków.
- Chen J., Gong P., He C., Pu R., Shi P. 2003. Land-Use/LandCover Change Detection Using Improved Change.Vector Analysis. Photogrammetric Engineering & Remote Sensing, 69, 4, 369‒379.
- Ciołkosz A., Bielecka E. 2005. Pokrycie terenu w Polsce. Bazy danych CORINE Land Cover. Biblioteka Monitoringu Środowiska, Warszawa.
- Ciołkosz A., Poławski Z.F. 2006. Zmiany użytkowania ziemi w Polsce w drugiej połowie XX wieku. Przegląd Geograficzny, 78, 2, 173‒190.
- Civco D.L., Hurd J.D., Wilson E.H., Song M., Zhang Z. 2002. A comparison of land use and land cover change detection methods. ASPRS-ACSM Annual Conference and FIG XXII Congress.
- Coppin P., Jonckheere I., Nackaerts K., Muys B., Lambin E. 2004. Digital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens., 25, 1565‒1596.
- Diogo V., Koomen E., Kuhlman T. 2015. An economic theory-based explanatory model of agricultural land-use patterns: The Netherlands as a case study. Agric. Syst., 139, 1‒16.
- Dramstad W.E., Fjellstad W.J., Strand G.-H., Mathiesen H.F., Engan G., Stokland J.N. 2002. Development, and implementation of the Norwegian monitoring programme for agricultural landscapes. Journal of Environmental Management, 64, 1.
- Drzewiecki W. 2008. Monitoring zmian pokrycia i użytkowania terenu na podstawie wieloczasowych obrazów teledetekcyjnych. Rocz. Geomatyki, 6, 131‒142.
- Fuller R.M., Smith, G.M., Devereux B.J. 2003. The characterisation and measurement of land cover change through remote sensing: Problems in operational applications, Int. J. Appl. Earth Obs. Geoinf., 4, 243‒253.
- Gellrich M., Zimmermann N.E. 2007. Investigating the regional-scale pattern of agricultural land abandonment in the Swiss mountains: A spatial statistical modelling approach. Landsc. Urban Plan., 79, 65‒76.
- Grabska E. 2017. Ocena możliwości wykorzystania satelitarnych danych optycznych i radarowych do identyfikacji typów użytków rolnych. Prace Geograficzne, 148, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków, 135‒155.
- GMES Fast Track Land Monitoring Core Service. Strategic Implementation Plan. Final Version,24-04-2007. http://www.gmes.info/fileadmin/user_upload/Docs_Files/LMCS_Strategic_Implementation_Plan_Final.pdf
- Grădinaru S.R., Iojă C.I., Onose D.A., Gavrilidis A.A., Pătru-Stupariu I., Kienast F., Hersperger A.M. 2015. Land abandonment as a precursor of built-up development at the sprawling periphery of former socialist cities. Ecological Indicators, 57, October, 305‒313. https://doi.org/10.1016/j.ecolind.2015.05.009
- Hejmanowska B., Wężyk P. 2020. Dane satelitarne dla administracji publicznej. Polska Agencja Kosmiczna.
- Hietel E., Waldhardt R., Otte A. 2004. Analysing land-cover changes in relation to environmental variables in Hesse, Germany. Landscape Ecology, 19.
- Hussain M., Chen D., Cheng A., Wei H., Stanley D. 2013. Wykrywanie zmian z obrazów wykrywanych zdalnie: od podejść opartych na pikselach do podejść opartych na obiektach. ISPRS, J. Photogramm., 80, 91‒106.
- Krischke M., Niemeyer W., Scherer S. 2000. RapidEye satellite based geo-information system. Acta Astronautica, 46, 307‒312.
- Krzyk P., Tokarczuk T., Heczko-Hyłowa E., Ziobrowski Z. 2013. Obszary rolne jako element struktury przestrzennej miast. Problemy planistyczne. Instytut Rozwoju Miast, Kraków, 48‒69.
- Kwoczyńska B., Sroka W., Sikora K. 2019. Analysis of land use changes in selected communes of the Lublin metropolitan area based on remote sensing data. Geomatics, Landmanagement and Landscape, 4, 73‒91. http://dx.doi.org/10.15576/GLL/2019.4.73
- Lewińska K. 2011. Porównanie klasyfikacji wieloczasowych zdjęć satelitarnych MODIS. Teledetekcja Środowiska, 46, 3‒12.
- Lewiński S. 2007. Obiektowa klasyfikacja zdjęć satelitarnych jako metoda pozyskiwania informacji o pokryciu i użytkowaniu ziemi. Instytut Geodezji i Kartografii. Seria monograficzna nr 12. Warszawa.
- Li X., Yeh A.G.O. 1998. Principal component analysis of stacked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta. Int. J. Remote Sens., 19(8), 1501‒1518.
- Lorens P., Martyniuk-Pęczek J. 2010. Zarzadzanie rozwojem przestrzennym miast. Wydawnictwo Urbanista, Gdańsk, 16‒42.
- Lu D., Mausel P., Brondízio E., Moran E. 2004. Change detection techniques. International Journal of Remote Sensing, 25, 12, 2365‒2407.
- Mazzocchi C., Sali G., Corsi S. 2013. Land use conversion in metropolitan areas and the permanence of agriculture: Sensitivity Index of Agricultural Land (SIAL), a tool for territorial analysis. Land Use Policy, 35, 155‒162.
- Meyer M.A., Früh-Müller A. 2020. Patterns and drivers of recent agricultural land-use change in Southern Germany. Land Use Policy, 99, 104959.
- Meyfroidt P., Chowdhury R.R., de Bremond A., Ellis E.C., Erb K.H., Filatova T., ... Kull C.A. 2018. Middle-range theories of land system change. Global Environmental Change, 53, 52‒67.
- Michałowska K., Głowienka-Mikrut E. 2010. Wieloczasowe dane obrazowe w badaniu zmian pokrycia terenu. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 21, 281‒289.
- Mularz S., Drzewiecki W., Pirowski T. 2007. Teledetekcyjne metody rejestracji krajobrazu. Roczniki Geomatyki, V, 8.
- Musiał W., Wojewodzic T. 2014. Bariery przemian agrarnych w rolnictwie polskim ‒ poszukiwanie rozwiązań innowacyjnych. In: Problemy rozwoju rolnictwa i gospodarki żywnościowej w pierwszej dekadzie członkostwa Polski w Unii Europejskiej. Red. A. Czyżewski, B. Klepacki. Polskie Towarzystwo Ekonomiczne, Warszawa, 91‒109.
- Niedzielko J., Lewiński S. 2012. Detekcja zmian pokrycia terenu na zdjęciach satelitarnych Landsat ‒ porównanie trzech metod. Teledetekcja Środowiska, 47, 87‒98.
- Oliveira Duarte D., Zanetti J., Gripp J., Graças Medeiros N. 2016. Comparison of supervised classification methods of Maximum Likelihood image, Minimum Distance, Parallelepiped and Neural network in images of Unmanned Air Vehicle (UAV) in Viçosa-MG. Civil Engineering Department, Federal University of Viçosa (UFV), Campos do Jordao, 30.11.2016.
- Peiman R. 2011. Pre-classification and post-classification change-detection techniques to monitor land-cover and land-use change using multi-temporal Landsat imagery: A case study on Pisa Province in Italy. International Journal of Remote Sensing, 4365‒4381, August. https://doi.org/10.1080/01431161.2010.4868
- Pölling B., Sroka W., Mergenthaler M. 2017. Success of urban farming’s city-adjustments and business models. Findings from a survey among farmers in Ruhr Metropolis, Germany. Land Use Policy, 69, 372‒385.
- Prakasam C. 2010. Land use and land cover change detection through remote sensing approach: A case study of Kodaikanal taluk, Tamilnadu. International Journal of Geomatics and Geosciences, 1, 2, 150‒158.
- Ribeiro P.F., Santos J.L., Bugalho M.N., Santana J., Reino L., Beja P., Moreira F. 2014. Modelling farming system dynamics in High Nature Value Farmland under policy change. Agriculture, Ecosystems & Environment, 183, 138‒144.
- Rolf W., Peters D., Lenz R., Pauleit S. 2018. Farmland ‒ an Elephant in the Room of Urban Green Infrastructure? Lessons learned from connectivity analysis in three German cities. Ecological Indicators, 94, 151‒163.
- Rossiter D.G. 2014. Statistical methods for accuracy assessment of classified thematic maps. Cornell College of Agriculture and Life Sciences, Soil and Crop Sciences Section 2014 (online) [accessed: 08.11.2017]. http://www.css.cornell.edu/faculty/dgr2/teach/R/R_ac.pdf.
- Sandau R., Brieß K., D’Errico M. 2010. Small satellites for global coverage: Potential limits. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 492‒504.
- Satoła Ł., Wojewodzic T., Sroka W. 2018. Barriers to exit encountered by small farms in light of the theory of new institutional economics. Agric. Econ., Czech, 64(6), 277‒290.
- Schneider A. 2012. Monitoring land cover change in urban and pen-urban areas using dense time stacks of Landsat satellite data and a data mining approach. Remote Sensing of Environment, 124, 689‒704, June. https://doi.org/10.1016 / j.rse.2012.06.006
- Sroka W., Płonka A., Krzyk P. 2017. Exploring the factors of farmland abandonment ‒ a case study of the chosen Polish metropolitan areas. Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu, 19(4), 187‒194.
- Sroka W., Mikolajczyk J., Wojewodzic T., Kwoczynska B. 2018. Agricultural Land vs. Urbanisation in Chosen Polish Metropolitan Areas: A Spatial Analysis Based on Regression Trees. Sustainability, 10(3), 837.
- Sroka W. 2018. Conversion of agricultural land to non-agricultural purposes in selected Polish metropolitan areas. Acta Sci. Pol., ser. Oeconomia, 17(2), 97‒107. https://doi.org/10.22630/ASPE.2018.17.2.25
- Sroka W., Żmija D. 2021. Farming Systems Changes in the Urban Shadow: A Mixed Approach Based on Statistical Analysis and Expert Surveys. Agriculture, 11(5), 455. https://doi.org/10.3390/agriculture11050455
- Tewkesbury A., Comber A., Nicholas J., Tate P., Fisher F. 2015. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2015.01.006
- Tian J., Reinartz P., D’Angelo P., Ehlers M. 2013. Region-based automatic building, and forest change detection on Cartosat-1 stereo imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 226‒239, May. https://doi.org/10.1016/j.isprsjprs.2013.02.017
- Urban Atlas LUZ Priority List. 2007. European Commission, DG-REGIO. http://ec.europa.eu/enterprise/ calls/files/08_029/priority_list.xls
- Ustaoglu E., Castillo C.P., Jacobs-Crisioni C., Lavalle C. 2016. Economic evaluation of agricultural land to assess land use changes. Land Use Policy, 56, 125‒146.
- Verburg P.H., van de Steeg J., Veldkamp A., Willemen L. 2009. From land cover change to land function dynamics: A major challenge to improve land characterization. Journal of Environmental Management, 90, 1327‒1335.
- Vieira M.A., Formaggio A.R., Daleles Rennó C., ..., Mello M.P. 2012. Object Based Image Analysis and Data Mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas. Remote Sensing of Environment, August, 123, 553‒562.
- Vliet van J., Groot H.L.F. de, Rietveld P., Verburg P.H. 2015. Manifestations and underlying drivers of agricultural land use change in Europe. Landscape and Urban Planning, 133, 24‒36.
- Vogelmann J.E., Gallant A.L., Shi H., Zhu Z. 2016. Perspectives on monitoring gradual change across the continuity of Landsat sensors using time ‒ series data. Remote Sens. Environ., 185, 258‒270.
- Wästfelt A., Zhang Q. 2016. Reclaiming localisation for revitalising agriculture: A case study of peri-urban agricultural change in Gothenburg, Sweden. J. Rural Stud., 47, 172‒185.
- Wężyk P., Cisło-Lesicka U., Bajorek-Zydroń K., de Kok R. 2016. Kartowanie pokrycia i użytkowania terenu okolic Krakowa z wykorzystaniem klasyfikacji OBIA oraz danych teledetekcyjnych i GIS. Pokrycie terenu i przewietrzanie Krakowa. Konferencja, Kraków 20.10.2016.
- Wojewodzic T. 2017. Procesy dywestycji i dezagraryzacji w rolnictwie na obszarach o rozdrobnionej strukturze agrarnej. Zeszyty Naukowe Uniwersytetu Rolniczego w Krakowie, 535, seria Rozprawy, 412.
- Wojewodzic T. 2012. Divestments in the process of developing off-farm economic activity by farmers. Acta Scientiarum Polonorum, ser. Oeconomia, 3, 77‒85.
- Wulder M.A., White J.C., Loveland T.R., Woodcock C.E., Belward A.S., Cohen W.B., Fosnight E.A., Shaw J., Masek J.G., Roy D.P. 2016. The global Landsat archive: Status, consolidation, and direction. Remote Sens. Environ., 185, 271‒283.
- Xie H., Wang P., Yao G. 2014. Exploring the dynamic mechanisms of farmland abandonment based on a spatially explicit economic model for environmental sustainability: A case study in Jiangxi Province, China. Sustainability, 6, 1260‒1282.
- Xu R., Lin H., Lü Y., Luo Y., Ren Y., Comber A. 2018. A modified change vector approach for quantifying land cover change. Remote Sensing, 10, 1578.
- Yuan F., Sawaya K.E., Loeffelholz B.C., Bauer M.E. 2005. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens. Environ., 98, 317‒328.
- Zhu Z., Woodcock C.E. 2014. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ., 144, 152‒171.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-baaaf989-c270-4e0a-9017-1b408d56b785