PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonoscillation of damped linear differential equations with a proportional derivative controller and its application to Whittaker-Hill-type and Mathieu-type equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The proportional derivative (PD) controller of a differential operator is commonly referred to as the conformable derivative. In this paper, we derive a nonoscillation theorem for damped linear differential equations with a differential operator using the conformable derivative of control theory. The proof of the nonoscillation theorem utilizes the Riccati inequality corresponding to the equation considered. The provided nonoscillation theorem gives the nonoscillatory condition for a damped Euler-type differential equation with a PD controller. Moreover, the nonoscillation of the equation with a PD controller that can generalize Whittaker-Hill-type equations is also considered in this paper. The Whittaker-Hill-type equation considered in this study also includes the Mathieu-type equation. As a subtopic of this work, we consider the nonoscillation of Mathieu-type equations with a PD controller while making full use of numerical simulations.
Rocznik
Strony
67--79
Opis fizyczny
Bibliogr. 24 poz., wykr.
Twórcy
  • Department of Electronic Control Engineering, National Institute of Technology (KOSEN), Hiroshima College, Toyota-gun 725-023, Japan
Bibliografia
  • [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015), 57–66.
  • [2] N. Aliman, R. Ramli, S.M. Haris, M.S. Amiri, A robust adaptive-fuzzy-proportional-derivative controller for a rehabilitation lower limb exoskeleton, Eng. Sci. Technol. Int. J. 35 (2022), 101097.
  • [3] D.R. Anderson, Second-order self-adjoint differential equations using a proportional-derivative controller, Commun. Appl. Nonlinear Anal. 24 (2017), no. 1, 17–48.
  • [4] D.R. Anderson, Even-order self-adjoint boundary value problems for proportional derivatives, Electron. J. Differential Equations 2017, Paper no. 210, 18 pp.
  • [5] D.R. Anderson, S.G. Georgiev, Conformable Dynamic Equations on Time Scales, Boca Raton, FL, CRC Press, 2020.
  • [6] D.R. Anderson, D.J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl. 10 (2015), no. 2, 109–137.
  • [7] D. Çakmak, A note on M. K. Kwong and J. S. W. Wong’s paper “Oscillation and nonoscillation of Hill’s equation with periodic damping”, Dynam. Systems Appl. 15 (2016), 409–414.
  • [8] F. Çetinkaya, A review on the evolution of the conformable derivative, Funct. Differ. Equ. 29 (2022), no. 1–2, 23–37.
  • [9] F. Çetinkaya, T. Cuchta, Sturm–Liouville and Riccati conformable dynamic equations, Adv. Dyn. Syst. Appl. 15 (2020), no. 1, 1–13.
  • [10] H. Chhabra, V. Mohan, A. Rani, V. Singh, Robust nonlinear fractional order fuzzy PD plus fuzzy I controller applied to robotic manipulator, Neural Comput. Appl. 32 (2020), 2055–2079.
  • [11] O. Došlý, A. Özbekler, R.Š. Hilscher, Oscillation criterion for half-linear differential equations with periodic coefficients, J. Math. Anal. Appl. 393 (2012), no. 2, 360–366.
  • [12] A. Fleitas, J.E. Nápoles, J.M. Rodriguez, J.M. Sigarreta, Note on the generalized conformable derivative, Rev. Un. Mat. Argentina 62 (2021), no. 2, 443–457.
  • [13] A. Harir, S. Melliani, L.S. Chadli, Fuzzy generalized conformable fractional derivative, Adv. Fuzzy Syst. 2020, Art. ID 1954975, 7 pp.
  • [14] K. Ishibashi, J. Sugie, Simple conditions for parametrically excited oscillations of generalized Mathieu equations, J. Math. Anal. Appl. 446 (2017), no. 1, 233–247.
  • [15] R. Khalil, M.A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65–70.
  • [16] M.K. Kwong, J.S.W. Wong, Oscillation and nonoscillation of Hill’s equation with periodic damping, J. Math. Anal. Appl. 288 (2003), no. 1, 15–19.
  • [17] W. Magnus, S. Winkler, Hill’s Equation, Dover, New York, 1979.
  • [18] N.W. McLachlan, Theory and Application of Mathieu Functions, Dover, New York, 1964.
  • [19] M.D. Ortigueira, J.A.T. Machadob, What is a fractional derivative?, J. Comput. Phys. 293 (2015), 4–13.
  • [20] A. Özbekler, A. Zafer, Nonoscillation and oscillation of second-order impulsive differential equations with periodic coefficients, Appl. Math. Lett. 25 (2015), no. 3, 294–300.
  • [21] J. Sugie, K. Ishibashi, Oscillation problems for Hill’s equation with periodic damping, J. Math. Anal. Appl. 466 (2018), no. 1, 56–70.
  • [22] J. Sugie, K. Matsumura, A nonoscillation theorem for half-linear differential equations with periodic coefficients, Appl. Math. Comput. 199 (2008), no. 2, 447–455.
  • [23] E.T. Whittaker, On a class of differential equations whose solutions satisfy integral equations, Proc. Edinburgh Math. Soc. 33 (1914), 14–23.
  • [24] A. Zafer, On oscillation and nonoscillation of second-order dynamic equation, Appl. Math. Lett. 22 (2009), no. 1, 136–141.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-baaae308-e042-4c7b-b349-b9bd0a1d970c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.