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NONOSCILLATION OF
DAMPED LINEAR DIFFERENTIAL EQUATIONS
WITH A PROPORTIONAL DERIVATIVE CONTROLLER
AND ITS APPLICATION
TO WHITTAKER-HILL-TYPE
AND MATHIEU-TYPE EQUATIONS
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Abstract. The proportional derivative (PD) controller of a differential operator is
commonly referred to as the conformable derivative. In this paper, we derive a nonoscil-
lation theorem for damped linear differential equations with a differential operator
using the conformable derivative of control theory. The proof of the nonoscillation
theorem utilizes the Riccati inequality corresponding to the equation considered. The
provided nonoscillation theorem gives the nonoscillatory condition for a damped
Euler-type differential equation with a PD controller. Moreover, the nonoscillation of
the equation with a PD controller that can generalize Whittaker—Hill-type equations
is also considered in this paper. The Whittaker—Hill-type equation considered in this
study also includes the Mathieu-type equation. As a subtopic of this work, we consider
the nonoscillation of Mathieu-type equations with a PD controller while making full
use of numerical simulations.

Keywords: nonoscillation, proportional derivative controller, Riccati technique,
Mathieu equation, Whittaker—Hill equation.
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1. INTRODUCTION

In recent years, formulations of operators that can be interpreted as generalizations
of derivatives and integrals have been actively introduced. For example, the fractional
derivative may be a recent theme (see [1,8,12,13,15,19]). More recently, a generalized
derivative independent of the theory of fractional derivatives has been defined by
Anderson and Ulness [6]. The definition is given below.

© 2023 Authors. Creative Commons CC-BY 4.0 67



68 Kazuki Ishibashi

Definition 1.1. Let « € [0,1] and functions kg, k1 : [0,1] x R — [0, 00) be continuous
such that
ko(0,t) =0, k1(0,t) =1,
1, k1(1,t) =0, (1.1)
ko(a,t) #0, «a€(0,1], ki(ayt)#0, «a€]0,1).

Define the differential operator D% via

DR F(8) = a0, 01(6) + o) 5 F(0). (12)

Remark 1.2. From (1.1), we see that
DOf(t)=f(t) and D'f(t)=f'(t).

According to Anderson and Ulness [6], the impetus for the introduction of (1.2)
was the proportional derivative (PD) controller formula used in control theory. For
a controller output Y at time ¢, a PD controller with two tuning parameters follows
the below algorithm:

Y (t) = kpE(t) + K‘,d%E(t). (1.3)

Here, x), is the proportional gain, k4 is the derivative gain, and E is the input deviation.
Note that (1.3), used in PD control systems, is applied to analyze robotics [2,10].
Thus, (1.2) is called the proportional derivative or conformable derivative in control
theory.

This study deals with the nonoscillation of the damped linear differential equation
with a PD controller, as given below:

D*D“u + a(t) D% + b(t)u = 0, (1.4)

where o € (0,1]; a,b: [0,00) — R are continuous on R.
Eq. (1.4) is equivalent to the Sturm-Liouville type equation:

D*[r(t) D] + c(t)u =0, (1.5)

where r(t) = eqis, (t,t0) > 0 for t > to > 0 and ¢(t) = r(t)b(t). Here, eqi4, (t,t0)
is an exponential function used in the proportional derivative (see Theorem 4.2 of
Appendix for details). Anderson’s result can be referred for the equivalence transfor-
mation [3, Theorem 3.1]. Recently, with respect to these fundamentals, a qualitative
theory for Eq. (1.5) and Eq. (1.5) on the time scale has been developed [3-5,9].

The nontrivial oscillatory and nonoscillatory solutions are defined as (1.4) and
(1.5), respectively. For sufficiently large t > ¢, > 0, a nontrivial solution u of (1.4)
(or (1.5)) is said to be nonoscillatory on [tg,00) if it is eventually either positive
or negative. Conversely, the nontrivial solution u of (1.4) (or (1.5)) is said to be
oscillatory. Sturm’s comparison theorem has already been developed for (1.5) (see
Anderson’s result [3, Theorem 7.4]). Additionally, Sturm’s separation theorem for
linear dynamic equations on the time scale involving (1.5) has been established
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[4, Theorem 8.3.6]. Accordingly, if a nontrivial solution of (1.4) (or (1.5)) is oscillatory
or nonoscillatory, then all nontrivial solutions of (1.4) (or (1.5)) are oscillatory or
nonoscillatory, respectively.

Let o = 1. Then, Eq. (1.4) becomes the second-order linear differential equation

v’ + a(t)u’ + b(t)u = 0. (1.6)

There have been a large number of results on oscillation problems for (1.6). Among
them, an excellent nonoscillation theorem for Eq. (1.6) is given by Zafer [24].

Theorem 1.3 ([24]). Suppose there exists a differentiable function B such that
B'(t) = b(t). If
(B(t) - a(t)B(t) < 0 (1.7)

for large t, then all nontrivial solutions of (1.6) are nonoscillatory.

The pioneering work on Theorem 1.3 was undertaken by Kwong and Wong [16, The-
orem 2]. They assumed periodic functions for the coefficients a and b in Eq. (1.6).
The results of Kwong and Wong [16, Theorem 2] corresponding to linear differen-
tial equations have been generalized by many subsequent researchers. In particular,
Zafer [24] established a nonoscillation theorem for linear dynamic equations on time
scales that removed the periodicity of the coefficient functions a and b. Theorem 1.3 is
an excerpt from a small part of the results of Zafer’s nonoscillation theorem. Several
other researchers have extended the results of Kwong and Wong [16] for application to
half-linear differential equations and impulsive differential equations [7,11,20-22].

The purpose of this study is to establish Theorem 1.3 corresponding to (1.4).
The Riccati inequality corresponding to (1.4) is necessary to achieve the objective
of this study. However, the Riccati inequality corresponding to (1.4) has not yet
been published, and will be established in this paper. As an example of the new
nonoscillation theorem obtained in this study, we consider an equation that generalizes
the damped Euler-type differential equation

1
v +a(t)u + pU= 0. (1.8)

From Theorem 1.3, if a < —1/¢, then all nontrivial solutions of (1.8) are nonoscillatory.
We generalize this to correspond to (1.4).
As another example, consider the following linear differential equation

1 1 1
u” + (_8 + 3 cost + 3 cos(2t)> u=0. (1.9)

Equation (1.9) is a special case of the Whittaker—Hill-type equation [17,23]. In partic-
ular, the solution u of (1.9) is ez <°5*, This can be easily verified and the solution of
(1.9) is clear. Hence, the solution u of (1.9) is nonoscillatory. In this study, we discuss
the nonoscillation of the generalized equation (1.9) with a PD controller.
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In Section 2, this paper introduces the nonoscillation theorem corresponding to
(1.4), which extends Theorem 1.3. To prove the nonoscillation theorem, we introduce the
Riccati inequality corresponding to (1.4). Moreover, we give the nonoscillation condition
for a damped Euler-type equation with a PD controller that generalizes Eq. (1.8). In Sec-
tion 3, we discuss the nonoscillation of a generalized Whittaker—Hill-type equation using
a new nonoscillation theorem. As a reminder, the Whittaker—Hill-type equation (1.8)
has no damping coefficient a. In order to change the result of (1.4) to the undamped
equation (1.4), we clarify the equivalence of (1.4) and the undamped equation (1.4).
From the equivalence, we discuss the nonoscillation of the Whittaker—Hill-type equation
with a PD controller. In particular, the Whittaker—Hill-type equation includes the
Mathieu-type equation. The Mathieu equation is a well-known mathematical model
that appears in the fields of science and engineering. In Section 3, we consider the
nonoscillation of the Mathieu-type equation with a PD controller, especially using
numerical simulation. Section 4 contains a brief conclusion of this paper and a future
open question. As an appendix to this paper, the last section of this paper summarizes
the arithmetic formulas for the proportional derivatives used in this paper.

2. RICCATI TYPE PROPORTIONAL DERIVATIVE INEQUALITY
AND NONOSCILLATION THEOREM

Consider the Riccati type proportional derivative inequality
D% > b(t) —a(t)z + z(z + K1(a, t)). (2.1)
We have the following result:

Theorem 2.1. The following conditions are equivalent.

(i) All nontrivial solutions to (1.4) are nonoscillatory.
(ii) There exists a differentiable function z that satisfies (2.1) for large t.

Proof. To prove that (i) implies (ii), we need to find a solution z that satisfies (2.1).
Assuming that a solution u of Eq. (1.4) is nonoscillatory, define

__Du)
) = -

then, by using

D%u(t)
u(t)

— L Doty — (s u(t)) = —ro(a, ) LD

2(t)+ri(ont) = — u(t) u(t)

+r1(a,t) =

and
iy () + Ra(ast))u(t)
wi(t) = oo t) )
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we obtain

DODu(t) + a(t) Du(t) + b(t)u(t)
= DO‘[ ( ) (t)] a(t)z(t)u(t ) b(t)u(t)
—D%%( 2(t) (K1 (e, )u(t) + rola, t)u' (1))

+ m(a t) ( ) ( ) —a(t)z(t)u ( ) + b(t)u(t)
- ( — D®2(t) + b(t) — a(t)2(t) + 2(t) (2(t) + ka t))) (t) = 0.

«

Hence, z is a solution of the inequality (2.1).
To prove that (ii) implies (i), we show that a nontrivial solution to Eq. (1.4) is
nonoscillatory. Let z be a solution of (2.1). Define

d(t) := D%z(t) + a(t)z(t) — b(t) — 2(t)(2(¢) + £1(a, t)) > 0.
We consider the equation
D*D%u + a(t)D%u + (b(t) + d(t))u = 0. (2.2)

Using formulas for the proportional derivatives, we observe that Eq. (2.2) has the
nonoscillatory solution u(t) = e_.(¢,tp). Now (2.2) may be written as follows:

D®[eatn, (t,t0) D U] + eatr, (E,t0) (b(t) + d(t))u = 0, (2.3)

(see Anderson’s result [3, Theorem 3.1]). For (2.3), upon comparing the Strum-Liouville
type equation (1.5) by Sturm’s comparison theorem [3, Corollary 7.5], Eq. (1.5) must
be nonoscillatory. In other words, we find that all nontrivial solutions to (1.4) are
nonoscillatory. O

From Theorem 2.1, we obtain the following nonoscillation theorem for (1.4).

Theorem 2.2. Assuming there exists a differentiable function B such that D*B(t)=>b(t).
If
(B(t) — a(t) + k1(a, t))B(t) <0 (2.4)

for large t, then all nontrivial solutions of (1.4) are nonoscillatory.
Proof. If D*B(t) is added to both sides of (2.4), then
DB(t) = b(t) — a(t)B(t) + B(t)(B(t) + r1(, 1))

is obtained. Hence, B(t) satisfies (2.1). From Theorem 2.1, the proof of Theorem 2.2
is complete. O

Remark 2.3. For o = 1, Theorem 2.2 satisfies Theorem 1.3. Hence, Theorem 2.2 is
a generalization of Theorem 1.3.
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Example 2.4. As an example of Theorem 2.2, consider a damped Euler-type equation
with a PD controller

teo(t,t
DD+ a(t)D%u + Wu =0, t>t>0, (2.5)

where
t ki(a,T) dr

60(t7t0) = 67 -fto ko (e, 7)

Note that if & = 1, then Eq. (2.5) becomes Eq. (1.8). For (2.5), the following results
can be obtained using Theorem 2.2.
If

a(t) <

_eo(ttJO) + r1(at), (2.6)

then all nontrivial solutions of (2.5) are nonoscillatory.

Let B(t) = —eo(t,t0)/t. Then, using D%eq(t,tp) = 0 and the product rule of
proportional derivative (see Theorem 5.1 of Appendix for details), we see that

DaB(t) _ :‘{()(Oz7 tiso(t, to) .

From (2.6), we have

(B(t) _ a(t) + I‘El(Oé t))B(t) _ Gg(t,to) o Hl(a’t)€0<tat0> + a(t)GO(t’tO)

t2 t
_ €b(t.to)  ralet)eo(t to)
-2 t
bt to) | milant)eo(t,to) 0
t2 t '

Thus, the condition (2.3) of Theorem 2.2 is satisfied.

Remark 2.5. In the case that @ = 1, condition (2.6) becomes a < —1/¢. Hence,
we have generalized the nonoscillatory condition in Eq. (1.8).

3. WHITTAKER-HILL-TYPE AND MATHIEU-TYPE EQUATIONS
WITH A PD CONTROLLER

Consider the undamped linear differential equation with a PD controller
DD + ¢(t)v =0 (3.1)

more general than (1.8). Here, ¢ : [0,00) — R is continuous on R.
Eq. (3.1) and Eq. (1.4) have the following equivalence relation.
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Theorem 3.1. The following conditions are equivalent.

(i) Let a be a continuously differentiable function. All nontrivial solutions of (1.4)
are nonoscillatory.
(if) All nontrivial solutions of the undamped equation (3.1) are nonoscillatory, where

c(t) =b(t) — %D“a(t) - iaz(t) + %a(t)m(a,t) 652)
= b(t) — @a’(t) - iaZ(t).

Proof. To prove that (i) implies (ii), let
u(t) = v(t)e—g oo (t:10)
Then, from

D%u(t) = <D°‘U(t) - a(t);(t)) et (t,to)

and
D D%u(t) = (D*D%v(t) — a(t)D(t)) e—a 14, (t, o)

4 (;a(t)m(a,t) - %Daa(t) + ia2(t)> 0(t)e—sg4m (t.10),

we see that Eq. (1.4) becomes Eq. (3.1) with (3.2). Therefore, if a nontrivial solution
of (1.4) is nonoscillatory, then a nontrivial solution of (3.1) with (3.2) is nonoscillatory.
Here, from Sturm’s separation theorem, if a nontrivial solution of (3.1) with (3.2) is
nonoscillatory, then all nontrivial solutions of (3.1) with (3.2) are nonoscillatory.

For the proof of (ii) through (i), we put v(t) = u(t)ea 1, (t,t0). From

Do) = (Dou(e) + 5 ) g tto

and

D*D?u(t) = (D*Du(t) + a(t)D*u(t)) 5 4, (¢, to)

+ (KO(S Do)+ ia2<t>> u(t)egrm (8 to),

we see that Eq. (3.1) with (3.2) becomes Eq. (1.4). Therefore, if a nontrivial solution of

(3.1) with (3.2) is nonoscillatory, then all nontrivial solutions of (1.4) are nonoscillatory.
O

Now consider a Whittaker—Hill-type equation with a PD controller

D*D%v + (5(15) + <’y - ;) eo(t,to)ko (e, t) cost + @ cos(2t)> v=20, (3.3)
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which is a generalization of (1.9). Here, v is a real number; the function ¢ is
e2(t,t 2(a, t R (ot
st) | mlast) | rofas ) (a,0)
8 4 2
Note that Eq. (3.3) becomes Eq. (1.9) if @ =1 and v = 1. Moreover, in the case that
v =1/2, Eq. (3.3) becomes the Mathieu-type equation with a PD controller

6(2) <t7 to)
8

5(t) =

DD + (—5@) + cos(2t)) v=0. (3.4)

Note that Mathieu’s equation is one of the most famous equations applied in the fields
of mechanics and electrical engineering [18].
Using Theorems 2.2 and 3.1, the following result can be obtained.

Theorem 3.2. Assume that k1 is differentiable for t > 0. If 0 < v < 1, then all
nontrivial solutions of (3.3) are nonoscillatory.

Proof. Let us compare Eq. (3.3) with the damped differential equation with a PD
controller:

DeD%u+ (eo(t,to) sint + K1 (a, 1)) D% + veo(t, to)ro(c, t) costu = 0. (3.5)
If we compare the coefficient functions of (1.4) and (3.5), they are
a(t) = eg(t,to)sint + k1 (a,t) and b(t) = veo(t, to)ko(a,t) cost.
Then, Egs. (3.5) and (3.3) are equivalent. Indeed, from

. m(a, f)eo(t, to)

a'(t) = ko(a, t)

sint + eg(t,tg) cost + K} (a, t)

and

a’(t) = e3(t, o) sin® t + 21 (v, t)eg(t, to) sint + wi(a, t),
we see that
eo(t, to)k1(a,t)

2
Ko, t)r (o t)

a*(t) = yeo(t, to)ko(a, t) cost + sint

_ folat)eo(t o)

1
4
ost —

t t,t t 2(a,t
) 0) Sin2t o 60( ) 0)/431(&3 ) sint — ﬂl(av )
4 2 4

_ e%(t,to) H%(avt) Ko(a’t)’ill(o‘at)

A A S 2

1 2
+ (7 - 2> eo(t, to)ko(a,t) cost + %

cos 2t

= —4(t) + (fy - ;) eo(t,to)ko(a,t) cost

M cos 2t.
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Hence, the relation (3.2) is satisfied. If all nontrivial solutions of (3.5) are nonoscillatory,
then all nontrivial solutions of (3.3) are also nonoscillatory. We use Theorem 2.2 to
show that all nontrivial solutions of (3.5) are nonoscillatory.

If B(t) = ~yeo(t,to)sint for ¢ > 0, then we can find that

DB(t) = y(k1(a, t) sint + kg cost)eg(t, to) — vr1 (e, t)eo(t, to) sint
= vro(a, t)eg(t, to) cost.

Furthermore, from 0 < v < 1, we obtain

(B(t) — a(t) + k1(a, t))B(t) = <7e0(t7 to) sint — (eo(t,to) sint + k1 (a, 1))

+ k1 (a, t)) ~veo(t, to) sint
= (y—1)yed(t to)sin®t <0

Then, the above inequality satisfies (2.1). Hence, all nontrivial solutions of (3.5) are
nonoscillatory. In other words, all nontrivial solutions of (3.3) are nonoscillatory. O

Remark 3.3. In the case that v+ = 1 and a = 1, from Theorem 3.2, we
see that all nontrivial solutions of (1.9) are nonoscillatory. In another case that
~ = 1/2, all nontrivial solutions of (3.4) are nonoscillatory.

Now, for the special case of (3.4), if we change the parameter «, the nonoscillatory
solution of the special case of (3.4) may have bifurcated results. Using numerical
simulations, we will discuss the nonoscillatory solutions to (3.4) when v = 1/2. Here,
let w = D%,

koo, t) = sin (%) and kq(a,t) = cos (%) .

Then, Eq. (3.4) becomes

D% = w,

t,to) (3.6)

Dw = (5@) - eg(T cos(2t)> .

In Figure 1, we draw the positive orbits of (3.6) starting at point (1,1). In the
cases where a@ = 1,0.9,0.8, the positive orbits of (3.6) are divergent. Meanwhile,
when a = 0.7,0.6,0.5, the positive orbits of (3.6) are asymptotic to the origin.
In Figure 2, similarly, the solution curves of (3.4) are divergent if a = 1,0.9,0.8.
Furthermore, the solution curves of (3.4) are asymptotic to the origin if & = 0.7, 0.6, 0.5.
From Figures 1 and 2, it can be confirmed that the solutions of (3.4) and (3.6) are
nonoscillatory.
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w
6F
5k
4
3, a=1
— a=09
2 —etor
— a=06
1t — a=05
2 4 6 8 10 12

Fig. 1. The positive orbits of (3.6)

5 10 15 20
Fig. 2. The solution curves of (3.4)

4. CONCLUSION

In this study, we established the Riccati inequality corresponding to (1.4), which is
necessary to derive the nonoscillation theorem. Moreover, the nonoscillatory solutions
of Mathieu-type and Whittaker—Hill-type equations with a PD controller are discussed
(see Section 3). According to Figures 1 and 2, the solution that does not oscillate
is divided into divergent solutions and the solutions that converge to the origin.
Depending on the value of parameter o, one question arises: what is the parameter
condition for « that classifies diverging and converging nonoscillatory solutions? For
example, we consider v = 0.705 and a = 0.704. In Figure 3, we draw the two positive
orbits of (3.6) starting at point (1,1). In the case that o = 0.705, a positive orbit of
(3.6) is divergent. Meanwhile, in the case that o = 0.704, a positive orbit of (3.6) is
asymptotic to the origin. Thus, the following results can be predicted.

Conjecture 4.1. Suppose there exists a, such that 0.704 < a, < 0.705. If a < ay,
then all nontrivial solutions of (3.4) are asymptotic to the origin. If & > v, then all
nontrivial solutions of (3.4) are divergent. Here,

aT

ko(a, t) = sin (%) and k1(a,t) = cos (7) .
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1.5
1.0
0.5

: ‘ ‘ —y
1 2 3 4
Fig. 3. The positive orbits of (3.6) for a = 0.705 and o = 0.704

In the future, the classification of nonoscillatory solutions of (3.4) may also be
an interesting study.

5. APPENDIX

The fundamentals of the proportional derivative (1.2) defined by Anderson and
Ulness [6] using (1.1) are summarized below.

Theorem 5.1 ([6]). Let o € (0, 1], the points s,t € R with s < t, and let the function
@ : [s,t] = R be continuous. Let ko, k1 : [0,1] x R — [0,00) be continuous and satisfy
(1.1), with ¢/ko and Kk1/Kko being Riemann integrable on [s,t]. Then, the exponential
function with respect to D in (1.2) is defined as

b o) —ri () g SR

t
6¢(t, 5) = efs ro(a,7) , eo(t’ 5) —e fs ro(a,7)

and
D%ey(t,s) = ¢(t)es(t,s), D%eq(t,s)=0.

Theorem 5.2 ([6]). Let the proportional derivative D be given as (1.2), where
a € [0,1]. Let the function ¢ : [s,t] = R be continuous. Let ko, k1 : [0,1] x R — [0, 00)
be continuous and satisfy (1.1). Assume the functions f and g are differentiable as
needed. Then:

(i) Dkf(t) +1g(t)] = kD>f(t) +1D%g(t) for all k,l € R,
(ii) D*[f(t)g(t)] = fF()Dg(t) + g(t)D* f(t) — f(t)g(t)r1(x,t),
_ gD f(t) — f(t)D*g(t) | f(2)

(iit) D[f(#)/9(t)] = 20 + @m(a,t)'
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