PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element model for analysis of characteristics of shrouded rotor blade vibrations

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Model elementów skończonych do analizy charakterystyk drgań łopat wirnika osłoniętego
Języki publikacji
EN
Abstrakty
EN
The paper presents the approaches to FE modelling of blade airfoil, contact between the shrouds and operational damage. The regularities are established concerning the influence of the finite element type, finite element mesh and model of contact interaction on the spectrum of natural frequencies of blade assemblies. The use of the developed computational models is substantiated to determine the forced vibration characteristics of the selected objects of investigation. Based on the performed numerical experiments it was substantiated of finite element model selection for analysis of characteristics of shrouded rotor blade vibrations.
PL
W artykule przedstawiono podejścia do modelowania elementów skończonych płata łopaty, styku osłon oraz uszkodzeń eksploatacyjnych. Ustalono prawidłowości dotyczące wpływu typu elementu skończonego, siatki elementów skończonych oraz modelu interakcji stykowej na widmo częstotliwości drgań własnych zespołów łopatek. Uzasadnione jest wykorzystanie opracowanych modeli obliczeniowych do wyznaczania charakterystyk drgań wymuszonych wybranych obiektów badań. Na podstawie przeprowadzonych eksperymentów numerycznych uzasadniono wybór modelu elementów skończonych do analizy charakterystyk drgań osłoniętych łopat wirnika.
Rocznik
Strony
11--16
Opis fizyczny
Bibliogr. 15 poz., rys., wykr.
Twórcy
  • G.S. Pisarenko Institute for Problems of Strength of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • G.S. Pisarenko Institute for Problems of Strength of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • G.S. Pisarenko Institute for Problems of Strength of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • Department of Oscillations and Vibration Reliability, Kyiv, Ukraine
  • Vinnytsia National Technical University, Vinnytsia, Ukraine
  • Al-Farabi Kazakh National University, Almaty, Kazakhstan
  • Institute of Information and Computing Technologies of the CS MES of RK, Almaty, Kazakhstan
Bibliografia
  • [1] Abdelrhman A. M. et al.: Condition monitoring of blade in turbomachinery: A review. Advances in Mechanical Engineering 6(1), 2014, 210717.
  • [2] Giannini O., Casini P., Vestroni F.: Nonlinear harmonic identification of breathing cracks in beams. Computers & Structures 129, 2013, 166–177.
  • [3] Larin O. O.: Forced vibrations of bladings with the random technological mistuning. Proceedings of the ASME Turbo Expo 2010, 6, 2010, 667–672.
  • [4] Oh Y., Yoo H. H.: Vibration analysis of a rotating pre-twisted blade considering the coupling effects of stretching, bending, and torsion. Journal of Sound and Vibration 431, 2018, 20–39.
  • [5] Onishchenko E. A., Zinkovskii A. P., Kruts V. A.: Determination of the Vibration Diagnostic Parameters Indicating the Presence of a Mode I Crack in a Blade Airfoil at the Main, Super-and Subharmonic Resonances. Strength of Materials 50(3), 2018, 369–375.
  • [6] Panigrahi B., Pohit G.: Effect of cracks on nonlinear flexural vibration of rotating Timoshenko functionally graded material beam having large amplitude motion. Proceedings of the Institution of Mechanical Engineers Part C. Journal of Mechanical Engineering Science, 2018.
  • [7] Polishchuk L., Bilyy O., Kharchenko Y.: Prediction of the propagation of cracklike defects in profile elements of the boom of stack discharge conveyor. Eastern-European Journal of Enterprise Technologies 6(1), 2016, 44–52.
  • [8] Polishchuk L., Mamyrbayev O., Gromaszek K.: Mechatronic Systems II. Applications in Material Handling Processes and Robotics. Taylor & Francis Group, CRC Press, Balkema book Boca Raton, 2021.
  • [9] Rafiee M., Nitzsche F., Labrosse M.: Dynamics, vibration and control of rotating composite beams and blades: A critical review. Thin-Walled Structures 119, 2017, 795–819.
  • [10] Saito A.: Nonlinear vibration analysis of cracked structures: Application to turbomachinery rotors with cracked blades. Dissertation for the Doctoral Degree. The University of Michigan, Michigan 2009.
  • [11] Savulyak V. et al.: Modification of surfaces of steel details using graphite electrode plasma. In: Polishchuk L. et al.: Mechatronic Systems II. Applications in Material Handling Processes and Robotics, Taylor & Francis Group, CRC Press, Balkema book, Boca Raton, London, New York, Leiden 2021, 141–150.
  • [12] Tang W., Epureanu B. I.: Nonlinear dynamics of mistuned bladed disks with ring dampers. International Journal of Non-linear Mechanics 97, 2017, 30–40.
  • [13] Wójcik W. et al.: Mechatronic Systems I. Applications in Transport, Logistics, Diagnostics and Control. Taylor & Francis Group, CRC Press, Balkema book, London, New York 2021.
  • [14] Yang L. et al.: Mechanism of fast time-varying vibration for rotor–stator contact system: With application to fault diagnosis. Journal of Vibration and Acoustics 140(1), 2018, 014501.
  • [15] Zinkovskii K. et al.: Influence of modeling of contact interaction conditions on spectrum of natural vibration frequencies of blade assembly. 23rd International Congress on Sound and Vibration – ICSV 23, 2016, 289–293.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-baa5e395-d06f-4367-8858-49988f3f52d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.