PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High-temperature carbothermal dephosphorization of Malaysian monazite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High-temperature carbothermal reduction experiments with graphite powder were conducted to assess the dephosphorization behavior of Malaysian monazite concentrate. Thermodynamic analysis of the possible dephosphorization reactions was conducted to evaluate the feasibility of the carbothermal reduction of the monazite phases. The effects of temperature, particle size, and monazite to carbon ratio were then investigated under different conditions. The carbothermal reduction experiments were conducted based on the Taguchi design method, and up to 97% of phosphorous removal was achieved under optimized conditions. The optimal conditions for dephosphorization were determined as; a reduction temperature of 1350 °C, a particle size of -75 μm, and monazite to carbon molar ratio of 0.3. Microstructural and phase characterization of the dephosphorized products revealed that CeO2, Nd2O3, La2O3, and Pr2O3 oxide phases were prominent, and no residual peaks of monazite remained in the reduced products. The information gained from the study can aid in the design of a suitable post-dephosphorization hydrometallurgical treatment for exploiting Malaysian monazite as a local source of REEs.
Rocznik
Strony
140--155
Opis fizyczny
Bibliogr. 36 poz., rys. kolor.
Twórcy
  • School of Materials, Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia
  • School of Materials, Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia
  • School of Materials, Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia
  • CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
Bibliografia
  • ABREU, R. D., MORAIS, C. A. 2010. Purification of rare earth elements from monazite sulphuric acid leach liquor and the production of high-purity ceric oxide. Minerals Engineering, 23, 536-540.
  • ARIFFIN, K. S. Characteristics of processed ree-bearing heavy minerals associated with tin tailing from Kinta valley, Malaysia. International Symposium on Earth Science and Technology, 2009. 237-242.
  • BERRY, L., AGARWAL, V., GALVIN, J., SAFARZADEH, M. S. 2018. Decomposition of monazite concentrate In sulphuric acid. Canadian Metallurgical Quarterly, 57, 422-433.
  • BERRY, L., GALVIN, J., AGARWAL, V., SAFARZADEH, M. 2017. Alkali pug bake process for the decomposition of monazite concentrates. Minerals Engineering, 109, 32-41.
  • COTTRELL, T. 1958. Other measures of bond strength. The Strengths of Chemical Bonds, 2, 260-289.
  • FRANKEN, K. 1995. A roast-leach process for extraction of rare earths from complex monazite-xenotime concentrates. Separation Science and Technology, 30, 1941-1949.
  • GUPTA, C., MUKHERJEE, T. 1990. Hydrometallurgy in extraction processes, CRC Press.
  • HA, Y. G. 1979. Decomposition of monazite sand. Journal of the Korean Chemical Society, 23, 136-140.
  • HARROWFIELD, I., MACRAE, C., WILSON, N. 1993. Proceedings of the 27th annual mas meeting 1993.
  • HUANG, Y., ZHANG, T. A., JIANG, L., ZHIHE, D., JUNHANG, T. 2016. Decomposition of the mixed rare earth concentrate by microwave-assisted method. Journal of Rare Earths, 34, 529-535.
  • KARSHIGINA, Z., ABISHEVA, Z., BOCHEVSKAYA, Y., AKCIL, A., SARGELOVA, E., SUKUROV, B., SILACHYOV, I. 2018. Recovery of rare earth metals (rems) from primary raw material: Sulphatization-leachingprecipitation-extraction. Mineral Processing and Extractive Metallurgy Review, 39, 319-338.
  • KEEKAN, K. K., JALONDHARA, J. C., ABHILASH 2017. Extraction of ce and th from monazite using ree tolerant aspergillus niger. Mineral Processing and Extractive Metallurgy Review, 38, 312-320.
  • KEMP, D. 2017. The feasibility of extraction of thorium and rare earths from monazite through a thermal plasma and a chemical treatment process. North-West University (South Africa), Potchefstroom Campus.
  • KEMP, D., CILLIERS, A. 2016. High-temperature thermal plasma treatment of monazite followed by aqueous digestion. Journal of the Southern African Institute of Mining and Metallurgy, 116, 901-906.
  • KIM, W., BAE, I., CHAE, S., SHIN, H. 2009. Mechanochemical decomposition of monazite to assist the extraction of rare earth elements. Journal of Alloys and compounds, 486, 610-614.
  • KRISHNAMURTHY, N., GUPTA, C. K. 2015. Extractive metallurgy of rare earths, CRC press.
  • KUMARI, A., PANDA, R., JHA, M. K., KUMAR, J. R., LEE, J. Y. 2015. Process development to recover rare earth metals from monazite mineral: A review. Minerals Engineering, 79, 102-115.
  • MERRITT, R. R. 1990a. High temperature methods for processing monazite: I. Reaction with calcium chloride and calcium carbonate. Journal of the Less Common Metals, 166, 197-210.
  • MERRITT, R. R. 1990b. High temperature methods for processing monazite: Ii. Reaction with sodium carbonate. Journal of the Less Common Metals, 166, 211-219.
  • NI, Y., HUGHES, J. M., MARIANO, A. N. 1995. Crystal chemistry of the monazite and xenotime structures. American Mineralogist, 80, 21-26.
  • NRIAGU, J. O. 1984. Phosphate minerals: Their properties and general modes of occurrence. Phosphate minerals. Springer.
  • PENGFEI, X., FENG, L., JING, G., TU, G. 2010. High temperature dephosphorus behavior of baotou mixed rare earth concentrate with carbon. Journal of rare earths, 28, 194-197.
  • ROINE, A., MANSIKKA-AHO, J., BJÖRKLUND, P., KENTALA, J.-P., TALONEN, T. 2006. Outokumpu hsc chemistry, chemical reaction and equilibrium software with extensive thermochemical database. Finland: Outokumpu.
  • SADRI, F., NAZARI, A. M., GHAHREMAN, A. 2017. A review on the cracking, baking and leaching processes of rare earth element concentrates. Journal of Rare Earths, 35, 739-752.
  • SHEIBLEY, D. W., FOWLER, M. H. 1966. Infrared spectra of various metal oxides in the region of 2 to 26 microns. National Aeronautics and Space Administration, Cleveland, Ohio. Lewis Research Center.
  • SUÁREZ-RUIZ, I., CRELLING, J. C. 2008. Coal-derived carbon materials. Applied coal petrology. Elsevier.
  • TAGUCHI, G. 1986. Introduction to quality engineering: Designing quality into products and processes.
  • TRIPATHY, M., RANGANATHAN, S.H MEHROTRA, S. 2012. Investigations on reduction of ilmenite ore with different sources of carbon. Mineral Processing and Extractive Metallurgy, 121, 147-155.
  • UDAYAKUMAR, S., NOOR, A. F. M., HAMID, S. A. R. S. A., PUTRA, T. A. R., ANDERSON, C. G. 2020. Chemical and mineralogical characterization of malaysian monazite concentrate. Mining, Metallurgy, Exploration, 1-17.
  • WANG, Y., YUAN, Z. 2006. Reductive kinetics of the reaction between a natural ilmenite and carbon. International journal of mineral processing, 81, 133-140.
  • WILSON, N., MACRAE, C. 2005. An automated hybrid clustering technique applied to spectral data sets. Microscopy and Microanalysis, 11, 434-435.
  • XING, P.-F., ZHUANG, Y.-X., TU, G.-F., JING, G. 2010. High temperature dephosphorization behavior of monazite concentrate with charred coal. Transactions of Nonferrous Metals Society of China, 20, 2392-2396.
  • YUAN, S., YANG, H., XUE, X.-X., ZHOU, Y. 2017. Kinetics of roasting decomposition of the rare earth elements by cao and coal. Metals, 7, 213.
  • ZHANG, J.-P., LINCOLN, F. J. 1994. The decomposition of monazite by mechanical milling with calcium oxide and calcium chloride. Journal of alloys and compounds, 205, 69-75.
  • ZHENG, Q., BIAN, X., WU, W.-Y. 2017a. An environmental friendly coal-ca (oh) 2-naoh roasting decomposition strategy for bayan obo tailings. Metallurgical Research, Technology, 114, 201.
  • ZHENG, Q., WENYUAN, W., XUE, B. 2017b. Investigations on mineralogical characteristics of rare earth minerals In bayan obo tailings during the roasting process. Journal of Rare Earths, 35, 300-308.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-baa1e690-6e7d-4dcc-ac22-0a1b1af1b8a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.