PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Tm3+ ion doping on the possibility of Bragg resonator inscription using an excimer laser

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a comprehensive analysis of the lanthanide doping effect on the possibility of producing Bragg resonators using a UV excimer laser is presented. To fabricate the optical fibre preform, modified chemical vapour deposition (MCVD) technology equipped with a doping system using organometallic lanthanide compounds produced by Optocore was used. The efficiency of the fibre Bragg grating (FBG) inscription process was examined. Inscription of gratings was performed using manufactured fibre subjected and not subjected to hydrogen loading. The changes in three parameters characterizing the FBG spectra during exposure to the UV laser beam were determined. The efficiency of grating inscription on the produced lanthanide-doped fibres was compared to those on SMF-28 and NUFERN GF1 fibres. Since the spectral response is a key parameter determining the possibility of using FBGs for fibre laser construction, the temperature sensitivity for FBGs inscribed in the considered fibres was determined.
Słowa kluczowe
Rocznik
Strony
595--608
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
  • Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
  • Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska Street, 15-351, Bialystok, Poland
  • Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
autor
  • Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
autor
  • Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
  • Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
Bibliografia
  • [1] Miluski, P., Kochanowicz, M., Żmojda, J., & Dorosz, D. (2016). UV radiation detection using optical sensor based on Eu3+ doped PMMA. Metrology and Measurement Systems, 23(4), 615-621. https://doi.org/10.1515/mms-2016-0049
  • [2] Hasegawa, Y., & Nakanishi, T. (2015). Luminescent lanthanide coordination polymers for photonic applications. RSC Advances, 1, 338-353. https://doi.org/10.1039/c4ra09255d
  • [3] Honzatko, P., Baravets, Y., Kasik, I., & Podrazky, O. (2014). Wideband thulium-holmium-doped fiber source with combined forward and backward amplified spontaneous emission at 1600-2300 nm spectral band. Optics Letters, 39, 3650-3563. https://doi.org/10.1364/OL.39.003650
  • [4] Schuster, K., Unger, S., Aichele, C., Lindner, F., Grimm, S., Litzkendorf, D., Kobelke, J., Bierlich, J., & Wondraczek, K. (2014). Bartelt, H. Material and Technology Trends in Fiber Optics. Advanced Optical Technologies, 3, 447-468. https://doi.org/10.1515/aot-2014-0010
  • [5] Miluski, P., Markowski, K., Kochanowicz, M., Łodziński, M., Żmojda, J., Pisarski, W. A., Pisarska, J., Kuwik, M., Leśniak, M., Dorosz, D., Ragiń T., Askirka V., & Dorosz J. (2023). Tm3+/Ho3+ Profiled Co-Doped Core Area Optical Fiber for Emission in the Range of 1.6-2.1 μm. Scientific Reports, 13, 1-7. https://doi.org/10.1038/s41598-023-41097-2
  • [6] Michalska, M., Grześ, P., & Świderski, J. (2019). High power, 100 W-class, thulium-doped all-fiber lasers. Photonics Letters of Poland, 11, 109-111. https://doi.org/10.4302/plp.v11i4.953
  • [7] Michalska, M., Honzatko, P., Grzes, P., Kamradek, M., Podrazky, O., Kasik, I., & Swiderski, J. (2023). Thulium-doped 1940- and 2034-nm fiber amplifiers: Towards highly efficient, high-power all-fiber laser systems. Journal of Lightwave Technology, 42(1), 339-346. https://doi.org/10.1109/JLT.2023.3301397
  • [8] Prokopiuk, A., Bielecki, Z., & Wojtas, J. (2021). Improving the accuracy of the NDIR-based CO 2 sensor for breath analysis. Metrology and Measurement Systems, 28(4), 803812. https://doi.org/10.24425/mms.2021.138578
  • [9] Bielecki, Z., Stacewicz, T., Wojtas, J., Mikołajczyk, J., Szabra, D., & Prokopiuk, A. (2018). Selected optoelectronic sensors in medical applications. Opto-Electronics Review, 26(2), 122133. https://doi.org/10.1016/j.opelre.2018.02.007
  • [10] Yablon, Andrew D. (2005). Optical Fiber Fusion Splicing, Springer. https://doi.org/10.1007/b137759
  • [11] Pereira, L., Min, R., Hu, X., Caucheteur, C., Bang, O., Ortega, B., Marques, C., Antunes, P., & Pinto, J. L. (2018). Polymer optical fiber Bragg grating inscription with a single Nd:YAG laser pulse. Optics Express, 26, 18096-18104. https://doi.org/10.1364/OE.26.018096
  • [12] Min, R., Pereira, L., Paixão, T., Woyessa, G., André, P., Bang, O., Antunes, P., Pinto, J., Li, Z., Ortega, B., & Marques, C. (2019). Inscription of Bragg gratings in undoped PMMA mPOF with Nd:YAG laser at 266 nm wavelength. Optics Express, 27, 38039-38048. https://doi.org/10.1364/OE.27.038039
  • [13] Zhao, X., Tian, X., Wang, M., Rao, B., Li, H., Xi, X., & Wang, Z. (2021). Fabrication of 2 kW-level chirped and tilted fiber Bragg gratings and mitigating stimulated Raman scattering in long-distance delivery of high-power fiber laser. Photonics, 8(9), 369. https://doi.org/10.3390/photonics8090369
  • [14] Archambault, J. L., Reekie, L., & Russell, P. St. J. (1993). 100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses. Electronics Letters, 29(5), 453-455. https://doi.org/10.1049/el:19930303
  • [15] Peterka, P., Honzátko, P., Becker, M., Todorov, F., Písařík, M., Podrazký & O., Kašík I. (2013). Monolithic Tm-doped fiber laser at 1951 nm with deep-UV femtosecond-induced FBG pair. IEEE Photonics Technology Letters, 25(16), 1623-1625. https://doi.org/10.1109/LPT.2013.2272880
  • [16] Kisała, P. (2022). Physical foundations determining spectral characteristics measured in Bragg gratings subjected to bending. Metrology and Measurement Systems, 29(3), 573584. https://doi.org/10.24425/mms.2022.142275
  • [17] Kisała, P. (2023). Identification of cladding modes in SMF-28 fibers with TFBG structures. Metrology and Measurement Systems, 30(3), 507-518. https://doi.org/10.24425/mms.2023.146418
  • [18] Zhang, X., Sun, F., Jiang, J., Feng, M., Wang, S., Fan, X., Yang, Y., & Liu, T. (2019). High-precision FBG demodulation using amplitude ratio curve with sharp peak. Optical Fiber Technology, 47, 7-14. https://doi.org/10.1016/j.yofte.2018.11.020
  • [19] Mahakud, R., Prakash, O., Kumar, J., Nakhe, S. V., & Dixit, S. K. (2012). Analysis on the effect of UV beam intensity profile on the refractive index modulation in phase mask based fiber Bragg grating writing. Optics Communications, 285(24), 5351-5358. https://doi.org/10.1016/j.optcom.2012.08.015
Uwagi
1. The research leading to these results has received funding from the commissioned task entitled “VIA CARPATIA Universities of Technology Network named after the President of the Republic of Poland Lech Kaczyński”, contract no. MEiN/2022/DPI/2575 action entitled “In the Neighbourhood - Inter-university Research Internships and Study Visits”.
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-baa0e7b3-8780-4a37-8a99-574b5d1c18e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.