PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A method of fatigue strength testing of wheel rim fragments at the production process stage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes a method of accelerated fatigue strength testing of elements with the use of inertia forces. The presented test method is dedicated to the selected materials, constructions and joints used in the production of wheel rims for motor vehicles, tractors and special vehicles. The analysis of the fatigue process in machinery components and the evaluation of its state in terms of product quality control can be divided into: quasi-static analysis, resonance analysis, and the one generally used today – virtual fatigue analysis. Virtual analysis is applicable to new components and/or structures released to production according to the concept based on the interaction of theoretical and working models in the context of service life prediction. The purpose of this paper is to present a tool for examination, and a method allowing the identification of the beginning of the fatigue cracking process in structural components. The demonstrated method belongs to the destructive testing group. Cracking process analysis and identification is based on a multiparameter analysis of vibration signals in the amplitude-frequency domain. Inertia force is used in the test piece destruction process. The discussed method is applicable to a wide range of fatigue tests for structural components in the quality control process for materials and combinations of these materials. The method has been employed in the production of low-speed and special machinery wheel rims by Polkar Warmia Ltd.
Twórcy
autor
  • University of Warmia and Mazury in Olsztyn Department of Vehicle and Machine Design and Operation Faculty of Technical Sciences Oczapowskiego Street 11, 10-719 Olsztyn tel.: +48 89 523 37 51, fax: +48 89 523 34 63
autor
  • POLKAR WARMIA Sp. z o.o. Fabryka Kół Tarczowych w Dobrym Mieście Fabryczna Street 21, 11-040 Dobre Miasto tel.: +48 89 61 62 350, tel./fax: +48 89 61 63 351
Bibliografia
  • [1] Ahmadi, A., Zenner, H., Simulation of microcrack growth for different load sequences and comparison with experimental results, International Journal of Fatigue, 27, pp. 853-861, 2005.
  • [2] Alessandro, Scattina, Mario, Alovisi, Davide, Salvatore Paolino, Damiano, Pasqualini, Nicola Scotti, Giorgio, Chiandussi, Elio, Berutti, Prediction of Cyclic Fatigue Life of Nickel-Titanium Rotary Files by Virtual Modeling and Finite Elements Analysis, Journal of Endodontics, Vol. 41, Is. 11, pp. 1867–1870, 2015.
  • [3] Döring, R., Hoffmeyer, J., Seeger, T., Vormwald, M., Constitutive modeling of nonproportional hardening, cyclic hardening and modeling, Proceedings of the Seventh International Conference on Biaxial/Multiaxial Fatigue and Fracture, Deutscher Verband für Materialforschung und –prüfung e.V., Berlin, pp. 291-296, 2004.
  • [4] Döring, R., Hoffmeyer, J., Seeger, T., Vormwald, M., Short fatigue crack growth under nonproportional multiaxial elastic-plastic strains, International Journal of Fatigue, 28, pp. 972-982, 2006.
  • [5] Halliday, M. D., Cooper, C., Poole, P., Bowen, P., On predicting small fatigue crack growth and fatigue life from long crack data in 2024 aluminium alloy, Int. J. Fatigue, 25, pp. 709-718, 2003.
  • [6] Hsin Jen Hoh, John Hock Lye Pang, Kin Shun Tsang, Stress intensity factors for fatigue analysis of weld toe cracks in a girth-welded pipe, International Journal of Fatigue, Vol. 87, pp. 279-28, 2016. [7] Kanazawa, K., Miller, K. J., Brown, W. M., Low-cycle fatigue under out-of-phase loading conditions, Journal of Engineering Materials and Technology, 99, pp. 222-228, 1977.
  • [8] Ohkawa, I., Takahashi, H., Moriwaki, M., Misumi, M., A study on fatigue crack growth under out-of-phase combined loadings, Fatigue and Fracture of Engineering Materials and Structures 20(6), pp. 929-940, 1997.
  • [9] Orhan, Sadettin, Analysis of free and forced vibration of a cracked cantilever beam, NDT&E International. Vol. 40, Is. 6, pp. 443-450, 2007
  • [10] PN EN ISO 3059:2013-06E, Non-destructive testing – Penetrant and magnetic particle testing – Observation conditions.
  • [11] PN EN ISO 3452-1:2013-08E, Non-destructive testing – Penetrant testing – General principles.
  • [12] Regulation no. 124 of the Economic Commission for Europe of the United Nations (UN/ECE) − Uniform provisions concerning the approval of wheels for passenger cars and their trailers, Official Journal of the European Union L70/413.
  • [13] Rychlik, A., The method of identifying destruction process of structural components using vibroacoustic analysis, ZESZYTY NAUKOWE No. 3 (26), pp. 125-136, 2015.
  • [14] Seong-In, Moon, Il-Je, Cho, David, Yoon, Fatigue life evaluation of mechanical components using vibration fatigue analysis technique, Journal of Mechanical Science and Technology, 25 (3), pp. 631-637, 2011.
  • [15] Tanaka, E., A nonproportionality parameter and a cyclic viscoplastic modeling taking into account amplitude depences and memory effects of isotropic hardening, European Journal of Mechanics, A/Solids, 13, pp. 155-173, 1994.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba987062-64b3-43c7-92f1-c36cfc671452
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.