PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Developments in Friction Stir based technologies

Identyfikatory
Warianty tytułu
PL
Rozwój technologii zgrzewania tarciowego z mieszaniem materiału - FSW
Konferencja
56. Konferencja Spawalnicza "Spawalnictwo - zawsze można więcej", Sosnowiec, 14-15.10.2014
Języki publikacji
EN
Abstrakty
EN
Solid state techniques have been widespread and have the potential to be introduced in several industries solving problems that are not possible to resolve through the more common technologies. Friction Stir Welding is a welding technique based on friction mechanisms that has been studied since its discovery on 1991. This technique can weld aluminium and copper alloys and is of particular interest for the energy sector. Friction stir technology is widely used for welding aluminium through its potential reaches other areas. The present paper covers examples of applications of friction stir welding, surfacing and channelling, with potential for industrial implementation. The present paper depicts one example application in the replacement of copper by aluminium in electric power transformers which is of particular interest due to the savings that can be reached. A feasibility study has been carried out in which it is demonstrated that this process can effectively weld thin aluminium and copper plates producing very good results in the material mechanical and electrical properties. It was also confirmed that this process can effectively weld aluminium to copper however some restrictions must be made to guarantee a sound weld. Surfacing techniques are of particular interest because they can improve the mechanical properties of a certain material making it more robust to the environmental conditions. Developments in friction stir processing and friction surfacing are shown and result in improvement of the mechanical properties compared to the base material. It was concluded that both these processes can be used as surfacing techniques and usually the processed area presents better mechanical, wear and corrosion properties than the substrate. Friction Stir Channelling is a novel technique that can have a widespread application in the mould industry as it is a suitable technique for the production of internal conformal channels. An example focusing the production of two prototypes for the mould industry with the objective of rapidly homogenizing the surrounding temperature is presented in this paper.
PL
Technologia zgrzewania w stanie stałym jest szeroko rozpowszechniona i ma duży potencjał wzrożeniowy, zwłaszcza w tych miejcach, gdzie produkcja nie może być prowadzona z wykorzystaniem innych znanych technik spawalniczych. Friction Stir Welding (FSW) wykorzystuje do nagrzania metali i ich łączenia zjawiska tarcia. Dynamicznie się rozwija od jej wynalezienia w 1991 r. i nadaje się szczególnie do łączenia stopów aluminium, stopów miedzi i innych. Ma duże znaczenie dla sektora energetycznego. W artykule przedstawiono przykład zastosowania ww. technologii do zgrzewania elementów transformatorów elektrycznych, gdzie miedź zastąpiono aluminium, co jest szczególnie interesujące ze względu na potencjalne oszczędności. Udowodniono, że pomimo pewnych ograniczeń proces ten nadaje się do łaczenia cienkich blach aluminiowych i miedzianych. Szczególnie interesujące są techniki tarciowego modyfikowania powierzchni, ponieważ mogą poprawiać właściwości mechaniczne powierzchni materiału w ściśle określonym miejscu. Stosowanie modyfikacji tarciowej oraz wprowdzanie dodatkowego materiału mogą poprawiać odporność na ścieranie i właściwości antykorozyjne. Wytwarzanie kanałów metodą tarciową, tzw. FSC (ang. Friction Stir Channelling) jest nową techniką, która może znaleść szerokie zastosowanie w produkcji elementów chłodzących. Przedstawiono w niniejszym opracowaniu przykładową konstukcję takich dwóch, prototypowych wyrobów.
Rocznik
Strony
12--23
Opis fizyczny
Bibliogr. 32 poz., rys., tabl.
Twórcy
autor
  • Instituto Superior Tecnico, Universidade de Lisboa, IDMEC, Instituto de Engenharia Mecanica - Pólo IST,Lisbon, Portugal
autor
  • Instituto Superior Tecnico, Universidade de Lisboa, IDMEC, Instituto de Engenharia Mecanica - Pólo IST,Lisbon, Portugal
Bibliografia
  • 1. T. M. Wayne, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith, and C. J. Dawes, “Improvements relating to friction welding,” WO/1993/010935, International Patent Number PCT/GB92/02203,1992.
  • 2. R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Mater. Sci. Eng. R Reports, vol. 50, no. 1–2, pp. 1–78, Aug. 2005.
  • 3. F. Nascimento, T. Santos, P. Vilaça, R.M. Miranda, and L. Quintino, “Microstructural modification and ductility enhancement of surfaces modified by FSP in aluminium alloys,” Mater. Sci. Eng. A, vol. 506, no. 1–2, pp. 16–22, Apr. 2009.
  • 4. P. Cavaliere, A. Squillace, and F. Panella, “Effect of welding parameters on mechanical and microstructural properties of AA6082 joints produced by friction stir welding,” J. Mater. Process. Technol., vol. 200, no. 1–3, pp. 364– 372, May 2008.
  • 5. D. M. Rodrigues, A. Loureiro, C. Leitao, R. M. Leal, B. M. Chaparro, and P. Vilaça, “Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds,” Mater. Des., vol. 30, no. 6, pp. 1913–1921, Jun. 2009.
  • 6. P. Cavaliere, A. De Santis, F. Panella, and A. Squillace, “Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding,” Mater. Des., vol. 30, no. 3, pp. 609–616, Mar. 2009.
  • 7. K. Elangovan and V. Balasubramanian, “Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy,” J. Mater. Process. Technol., vol. 200, no. 1–3, pp. 163– 175, May 2008.
  • 8. P. M. G. P. Moreira, T. Santos, S. M. O. Tavares, V. Richter-Trummer, P. Vilaça, and P. M. S. T. de Castro, “Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6,” Mater. Des., vol. 30, no. 1, pp. 180–187, Jan. 2009.
  • 9. S. T. Amancio-Filho, S. Sheikhi, J. F. dos Santos, and C. Bolfarini, “Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4,” J. Mater. Process. Technol., vol. 206, no. 1–3, pp. 132–142, Sep. 2008.
  • 10. C. Vidal, V. Infante, and P. Vilaça, “Assessment of improvement techniques effect on fatigue behaviour of friction stir welded aerospace aluminium alloys,” Procedia Eng., vol. 2, no. 1, pp. 1605–1616, Apr. 2010.
  • 11.A. K. Lakshminarayanan and V. Balasubramanian, “Process parameters optimization for friction stir welding of RDE-40 aluminium alloy using Taguchi technique,” Trans. nonferrous Met. Soc. China, vol. 18, pp. 548– 554, 2008.
  • 12.G. Casalino, S. Campanelli, and M. Mortello, “Influence of Shoulder Geometry and Coating of the Tool on the Friction Stir Welding of Aluminium Alloy Plates,” Procedia Eng., vol. 69, pp. 1541–1548, 2014.
  • 13.I. Kalemba, C. Hamilton, and S. Dymek, “Natural aging in friction stir welded 7136-T76 aluminum alloy,” Mater. Des., vol. 60, pp. 295–301, Aug. 2014.
  • 14.A. Steuwer, M. J. Peel, and P. J. Withers, “Dissimilar friction stir welds in AA5083–AA6082: The effect of process parameters on residual stress,” Mater. Sci. Eng. A, vol. 441, no. 1–2, pp. 187–196, Dec. 2006.
  • 15.C. Jonckheere, B. de Meester, A. Denquin, and A. Simar, “Torque, temperature and hardening precipitation evolution in dissimilar friction stir welds between 6061- T6 and 2014-T6 aluminum alloys,” J. Mater. Process. Technol., vol. 213, no. 6, pp. 826– 837, Jun. 2013.
  • 16.P. Cavaliere and F. Panella, “Effect of tool position on the fatigue properties of dissimilar 2024-7075 sheets joined by friction stir welding,” J. Mater. Process. Technol., vol. 206, no. 1–3, pp. 249–255, Sep. 2008.
  • 17. H. Jamshidi Aval, S. Serajzadeh, and A. H. Kokabi, “Evolution of microstructures and mechanical properties in similar and dissimilar friction stir welding of AA5086 and AA6061,” Mater. Sci. Eng. A, vol. 528, no. 28, pp. 8071–8083, Oct. 2011.
  • 18.A. Scialpi, M. De Giorgi, L. A. C. De Filippis, R. Nobile, and F. W. Panella, “Mechanical analysis of ultra-thin friction stir welding joined sheets with dissimilar and similar materials,” Mater. Des., vol. 29, no. 5, pp. 928– 936, Jan. 2008.
  • 19.D. Liu, H. Nishio, and K. Nakata, “Anisotropic property of material arrangement in friction stir welding of dissimilar Mg alloys,” Mater. Des., vol. 32, no. 10, pp. 4818–4824, Dec. 2011.
  • 20. E. D. Nicholas and W. M. Thomas, “A review of friction processes for aerospace applications,” Int. J. Mater. Prod. Technol., vol. 13, pp. 45–55, 1998.
  • 21.P. Vilaça, J. Gandra, and C. Vidal, “Chapter 7 - Linear Friction Based Processing Technologies for Aluminum Alloys : Surfacing , Stir Welding and Stir Channeling,” in in Aluminium Alloys - New Trends in Fabrication and Applications, 2012, pp. 159–197.
  • 22.V.I. Vitanov, N. Javaid, and D.J. Stephenson, “Application of response surface methodology for the optimisation of micro friction surfacing process,” Surf. Coatings Technol., vol. 204, no. 21–22, pp. 3501–3508, Aug. 2010.
  • 23.M. L. Kramer de Macedo, G. A. Pinheiro, J. F. dos Santos, and T. R. Strohaecker, “Deposit by friction surfacing and its applications,” Weld. Int., vol. 24, no. 6, pp. 422–431, Jun. 2010.
  • 24. R. Puli and G. D. Janaki Ram, “Microstructures and properties of friction surfaced coatings in AISI 440C martensitic stainless steel,” Surf. Coatings Technol., vol. 207, pp. 310–318, Aug. 2012.
  • 25. S. Hanke, A. Fischer, M. Beyer, and J. dos Santos, “Cavitation erosion of NiAl-bronze layers generated by friction surfacing,” Wear, vol. 273, no. 1, pp. 32–37, Nov. 2011.
  • 26. D. Govardhan, a. C.S. Kumar, K.G.K. Murti, and G. Madhusudhan Reddy, “Characterization of austenitic stainless steel friction surfaced deposit over low carbon steel,” Mater. Des., vol. 36, pp. 206–214, Apr. 2012.
  • 27.N. Balasubramanian, R. S. Mishra, and K. Krishnamurthy, “Friction stir channeling: Characterization of the channels,” J. Mater. Process. Technol., vol. 209, no. 8, pp. 3696– 3704, Apr. 2009.
  • 28. P. Vilaça and C. Vidal, “Ferramenta Modular Ajustável e Respectivo Processo de Abertura de Canais Internos Contínuos em Componentes Maciços (Modular adjustable tool and correspondent process for opening continuous internal channels in solid components),” National patent pending N.o 105628 T, 2011.
  • 29. P. Vilaça, “Fundamentos do processo de soldadura por fricção linear – Análise experimental e modelação analítica,” Instituto Superior Técnico, 2003.
  • 30. P. K. Tipaji, “E-Design Tools for Fraction Stir Welding: Cost Estimation Tool,” Thesis for Master Degree, University of Missouri-Rolla, 2007.
  • 31.J. Gandra, R. M. Miranda, and P. Vilaça, “Effect of overlapping direction in multipass friction stir processing,” Mater. Sci. Eng. A, vol. 528, no. 16–17, pp. 5592–5599, Jun. 2011.
  • 32.J. Gandra, D. Pereira, R.M. Miranda, R.J.C. Silva, and P. Vilaça, “Deposition of AA6082-T6 over AA2024-T3 by friction surfacing - Mechanical and wear characterization,” Surf. Coatings Technol., vol. 223, pp. 32–40, May 2013.
Uwagi
PL
Wersja polska artykułu w wydaniu papierowym s. 17--24.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba90c29c-4f16-41ea-8368-3c81db3a90fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.