Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The yield and quality of silicon wafers are mostly determined by defects, including grain boundaries, dislocations, vacancies, interstitials, and vacancy and oxygen clusters. Active generation and multiplication of dislocations during Czochralski monosilicon crystal growth is almost always followed by a transition to multicrystalline material and is called structure loss. Possible factors in structure loss are related to high thermal stresses, fluctuations of local crystallization rate caused by melt flow turbulence, melt undercooling and incorporation of solid particles from the melt into the crystal. Experimental analysis of dislocation density distributions in grown crystals contributes to an understanding of the key reasons for structure loss: particle incorporation at the crystallization front and strong fluctuations of crystallization rate with temporal remelting. Comparison of experimental dislocation density measurements and modeling results calculated using the Alexander-Haasen model showed good agreement for silicon samples. The Alexander-Haasen model provides reasonably accurate results for dislocation density accompanying structure loss phenomena and can be used to predict dislocation density and residual stresses in multicrystalline Czochralski silicon ingots, which are grown for the purpose of manufacturing polysilicon rods for Siemens reactors and silicon construction elements.
Czasopismo
Rocznik
Tom
Strony
163--169
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
- STR Group, Inc., 64 Bolshoi Sampsonievskii pr., Build. "E", Office 605, St. Petersburg, 194044, Russian Federation
autor
- Soft-Impact, Ltd., 64 Bolshoi Sampsonievskii pr., Build. "E", Office 603, St. Petersburg, 194044, Russian Federation
- STR Group, Inc., 64 Bolshoi Sampsonievskii pr., Build. "E", Office 605, St. Petersburg, 194044, Russian Federation
autor
- Soft-Impact, Ltd., 64 Bolshoi Sampsonievskii pr., Build. "E", Office 603, St. Petersburg, 194044, Russian Federation
- STR Group, Inc., 64 Bolshoi Sampsonievskii pr., Build. "E", Office 605, St. Petersburg, 194044, Russian Federation
autor
- Soft-Impact, Ltd., 64 Bolshoi Sampsonievskii pr., Build. "E", Office 603, St. Petersburg, 194044, Russian Federation
autor
- Soft-Impact, Ltd., 64 Bolshoi Sampsonievskii pr., Build. "E", Office 603, St. Petersburg, 194044, Russian Federation
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-507 Warsaw, Poland
autor
- Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eissfeldt-Strasse 12, 06120 Halle, Germany
autor
- Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eissfeldt-Strasse 12, 06120 Halle, Germany
Bibliografia
- [1] Fraunhofer ise: Photovoltaics report, available online: www.ise.fraunhofer.de/content/ dam/ise/de/documents/publications /studies/photovoltaics-report.pdf (2018).
- [2] M. S. Kulkarni, J. C. Holzer, L. W. Ferry, The agglomeration dynamics of self-interstitials in growing czochralski silicon crystals, Journal of Crystal Growth 284 (3) (2005) 353-368. doi:10.1016/j.jcrysgro.2005.07.041.
- [3] A. Vorob’ev, A. Sid’ko, V. Kalaev, Advanced chemical model for analysis of cz and ds si-crystal growth, Journal of Crystal Growth 386 (2014) 226-234. doi:10.1016/j.jcrysgro.2013.10.022.
- [4] V. Kalaev, A. Sattler, L. Kadinski, Crystal twisting in cz si growth, Journal of Crystal Growth 413 (2015) 12-16. doi:10.1016/j.jcrysgro.2014.12.005.
- [5] O. Smirnova, N. Durnev, K. Shandrakova, E. Mizitov, V. Soklakov, Optimization of furnace design and growth parameters for si cz growth, using numerical simulation, Journal of Crystal Growth 310 (7) (2008) 2185-2191, the Proceedings of the 15th International Conference on Crystal Growth (ICCG-15) in conjunction with the International Conference on Vapor Growth and Epitaxy and the US Biennial Workshop on Organometallic Vapor Phase Epitaxy. doi:10.1016/j.jcrysgro.2007.11.204.
- [6] A. Lanterne, G. Gaspar, Y. Hu, E. Øvrelid, M. D. Sabatino, Investigation of different cases of dislocation generation during industrial cz silicon pulling, physica status solidi (c) 13 (10-12) (2016) 827–832. doi:10.1002/pssc.201600063.
- [7] A. Lanterne, G. Gaspar, Y. Hu, E. Øvrelid, M. D. Sabatino, Characterization of the loss of the dislocation-free growth during czochralski silicon pulling, Journal of Crystal Growth 458 (2017) 120-128. doi:10.1016/j.jcrysgro.2016.10.077.
- [8] Y. Wang, K. Kakimoto, An in-situ x-ray topography observation of dislocations, crystal-melt interface and melting of silicon, Microelectronic Engineering 56 (1) (2001) 143-146, sub-Quarter-Micron Silicon Issues in the 200/300 mm Conversion Era. doi:10.1016/S0167- 9317(00)00517-7.
- [9] A. Giannattasio, S. Senkader, R. J. Falster, P. R. Wilshaw, Generation of dislocation glide loops in czochralski silicon, Journal of Physics: Condensed Matter 14 (48) (2002) 12981.
- [10] H. Alexander, P. Haasen, Dislocations and plastic flow in the diamond structure, Vol. 22 of Solid State Physics, Academic Press, 1969, pp. 27-158. doi:10.1016/S0081-1947(08)60031-4.
- [11] T. Wejrzanowski, K. J. Kurzydlowski, Stereology of grains in nano-crystals, Solid State Phenomena 94 (2003) 221–228. doi:10.4028/www.scientific.net/SSP.94.221.
- [12] T. Wejrzanowski, W. Spychalski, K. Rozniatowski, K. Kurzydlowski, Image based analysis of complex microstructures of engineering materials, International Journal of Applied Mathematics and Computer Science 18 (1) (2008) 33–39. doi:10.2478/v10006-008-0003-1.
- [13] F. Secco d’ Aragona, Dislocation etch for (100) planes in silicon, Journal of The Electrochemical Society 119 (7) (1972) 948–951. doi:10.1149/1.2404374.
- [14] CGSim Flow Module, Theory Manual, Version 16.1, STR IP Holding, Richmond, VA, USA, 2017.
- [15] B. Gao, S. Nakano, K. Kakimoto, Highly efficient and stable implementation of the alexander-haasen model for numerical analysis of dislocation in crystal growth, Journal of Crystal Growth 369 (2013) 32-37. doi:10.1016/j.jcrysgro.2013.01.039.
- [16] V. N. Erofeev, V. I. Nikitenko, Comparison of theory of dislocation mobility with experimental data for silicon, Soviet Physics Jetp 33 (5).
- [17] V. Artemyev, A. Smirnov, V. Kalaev, V. Mamedov, A. Sidko, O. Podkopaev, E. Kravtsova, A. Shimansky, Modeling of dislocation dynamics in germanium czochralski growth, Journal of Crystal Growth 468 (2017) 443-447, the 18th International Conference on Crystal Growth and Epitaxy (ICCGE-18). doi:10.1016/j.jcrysgro.2017.01.032.
- [18] N. Miyazaki, H. Uchida, T. Munakata, K. Fujioka, Y. Sugino, Thermal stress analysis of silicon bulk single crystal during czochralski growth, Journal of Crystal Growth 125 (1) (1992) 102-111. doi:10.1016/0022- 0248(92)90325-D.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba8edbb6-df65-4996-b51e-ef3bf9719291