PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel proposal for all-optical XOR/XNOR gate using a nonlinear photonic crystal based ring resonator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optical logic gates are very important structures required for creating all-optical digital signal processing systems. Optical XOR and XNOR gates can be used for designing optical adders and optical comparators, respectively. In this paper we proposed a novel structure which can be used for simultaneous implementation of optical XOR and XNOR logic gates. The proposed structure was designed using a nonlinear photonic crystal ring resonator. The delay time for XOR and XNOR gates are 1.7 and 3 ps, respectively.
Słowa kluczowe
Czasopismo
Rocznik
Strony
283--291
Opis fizyczny
Bibliogr. 67 poz., rys.
Twórcy
  • Young Researchers and Elite Club, North Tehran Branch, Islamic Azad University, Tehran, Iran
  • Young Researchers and Elite Club, North Tehran Branch, Islamic Azad University, Tehran, Iran
  • Department of Electrical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
Bibliografia
  • [1] JOHN S., Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 58(23), 1987, pp. 2486–2489, DOI: 10.1103/PhysRevLett.58.2486.
  • [2] ALIPOUR-BANAEI H., SERAJMOHAMMADI S., MEHDIZADEH F., ANDALIB A., Band gap properties of two-dimensional photonic crystal structures with rectangular lattice, Journal of Optical Communications 36(2), 2015, pp. 109–114, DOI: 10.1515/joc-2014-0049.
  • [3] ZHENHAI WU, KANG XIE, HUAJUN YANG, Band gap properties of two-dimensional photonic crystals with rhombic lattice, Optik 123(6), 2012, pp. 534–536, DOI: 10.1016/j.ijleo.2011.05.020.
  • [4] NOORI M., SOROOSH M., A comprehensive comparison of photonic band gap and self-collimation based 2D square array waveguides, Optik 126(23), 2015, pp. 4775–4781, DOI: 10.1016/j.ijleo.20 15.08.082.
  • [5] ALIPOUR-BANAEI H., RABATI M.G., ABDOLLAHZADEH-BADELBOU P., MEHDIZADEH F., Effect of self-collimated beams on the operation of photonic crystal decoders, Journal of Electromagnetic Waves and Applications 30(11), 2016, pp. 1440–1448, DOI: 10.1080/09205071.2016.1202785.
  • [6] YU-CHI JIANG, SHAO-BIN LIU, HAI-FENG ZHANG, XIANG-KUN KONG, Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals, Optics Communications 348, 2015, pp. 90–94, DOI: 10.1016/j.optcom.2015.03.011.
  • [7] NOORI M., SOROOSH M., BAGHBAN H., Highly efficient self-collimation based waveguide for mid-IR applications, Photonics and Nanostructures – Fundamentals and Applications 19, 2016, pp. 1–11, DOI: 10.1016/j.photonics.2016.01.005.
  • [8] RANI P., KALRA Y., SINHA R.K., Design of all optical logic gates in photonic crystal waveguides, Optik 126(9–10), 2015, pp. 950–955, DOI: 10.1016/j.ijleo.2015.03.003.
  • [9] ROBINSON S., NAKKEERAN R., Two dimensional photonic crystal ring resonator based add drop filter for CWDM systems, Optik 124(18), 2013, pp. 3430–3435, DOI: 10.1016/j.ijleo.2012.10.038.
  • [10] ALIPOUR-BANAEI H., MEHDIZADEH F., High sensitive photonic crystal ring resonator structure applicable for optical integrated circuits, Photonic Network Communications 33(2), 2017, pp. 152–158, DOI: 10.1007/s11107-016-0625-4.
  • [11] ZHI-HONG ZHU, WEI-MIN YE, JIA-RONG JI, XIAO-DONG YUAN, CHUN ZEN, High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals, Optics Express 14(5), 2006, pp. 1783 –1788, DOI: 10.1364/OE.14.001783.
  • [12] ALIPOUR-BANAEI H., SERAJMOHAMMADI S., MEHDIZADEH F., All optical NAND gate based on nonlinear photonic crystal ring resonators, Optik 130, 2017, pp. 1214–1221, DOI: 10.1016/j.ijleo.2016.11.190.
  • [13] MEHDIZADEH F., SOROOSH M., ALIPOUR-BANAEI H., FARSHIDI E., A novel proposal for all optical analog-to-digital converter based on photonic crystal structures, IEEE Photonics Journal 9(2), 2017, article ID 4700311, DOI: 10.1109/JPHOT.2017.2690362.
  • [14] NOTOMI M., SHINYA A., MITSUGI S., KIRA G., KURAMOCHI E., TANABE T., Optical bistable switching action of Si high-Q photonic-crystal nanocavities, Optics Express 13(7), 2005, pp. 2678–2687, DOI: 10.1364/OPEX.13.002678.
  • [15] MOLOUDIAN G., SABBAGHI-NADOOSHAN R., HASSANGHOLIZADEH-KASHTIBAN M., Design of all-optical tunable filter based on two-dimensional photonic crystals for WDM (wave division multiplexing) applications, Journal of the Chinese Institute of Engineers 39(8), 2016, pp. 971–976, DOI: 10.1080/ 02533839.2016.1215937.
  • [16] ALIPOUR-BANAEI H., MEHDIZADEH F., HASSANGHOLIZADEH-KASHTIBAN M., A new proposal for PCRR-based channel drop filter using elliptical rings, Physica E: Low-dimensional Systems and Nanostructures 56, 2014, pp. 211–215, DOI: 10.1016/j.physe.2013.07.018.
  • [17] MANSOURI-BIRJANDI M.A., TAVOUSI A., GHADRDAN M., Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators, Photonics and Nanostructures – Fundamentals and Ap¬plications 21, 2016, pp. 44–51, DOI: 10.1016/j.photonics.2016.06.002.
  • [18] TAVOUSI A., MANSOURI-BIRJANDI M.A., Study on the similarity of photonic crystal ring resonator cavity modes and whispering-gallery-like modes in order to design more efficient optical power dividers, Photonic Network Communications 32(1), 2016, pp. 160–170, DOI: 10.1007/s11107-015-0592-1.
  • [19] YOUCEF MAHMOUD M., BASSOU G., TAALBI A., CHEKROUN Z.M., Optical channel drop filters based on photonic crystal ring resonators, Optics Communications 285(3), 2012, pp. 368–372, DOI: 10.1016/j.optcom.2011.09.068.
  • [20] TAALBI A., BASSOU G., YOUCEF MAHMOUD M., New design of channel drop filters based on photonic crystal ring resonators, Optik 124(9), 2013, pp. 824–827, DOI: 10.1016/j.ijleo.2012.01.045.
  • [21] YOUCEF MAHMOUD M., BASSOU G., TAALBI A., A new optical add–drop filter based on two-dimensional photonic crystal ring resonator, Optik 124(17), 2013, pp. 2864–2867, DOI: 10.1016/j.ijleo.20 12.08.072.
  • [22] ZEXUAN QIANG, WEIDONG ZHOU, SOREF R.A., Optical add-drop filters based on photonic crystal ring resonators, Optics Express 15(4), 2007, pp. 1823–1831, DOI: 10.1364/OE.15.001823.
  • [23] DIDEBAN A., HABIBIYAN H., GHAFOORIFARD H., Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems, Physica E: Low-dimensional Systems and Nanostructures 87, 2017, pp. 77–83, DOI: 10.1016/j.physe.2016.11.022.
  • [24] MEHDIZADEH F., SOROOSH M., ALIPOUR-BANAEI H., An optical demultiplexer based on photonic crystal ring resonators, Optik 127(20), 2016, pp. 8706–8709, DOI: 10.1016/j.ijleo.2016.06.086.
  • [25] MEHDIZADEH F., SOROOSH M., A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities, Photonic Network Communications 31(1), 2016, pp. 65–70, DOI: 10.1007/s11107-015-0531-1.
  • [26] TALEBZADEH R., SOROOSH M., KAVIAN Y.S., MEHDIZADEH F., Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities, Optik 140, 2017, pp. 331–337, DOI: 10.1016/j.ijleo.20 17.04.075.
  • [27] TALEBZADEH R., SOROOSH M., KAVIAN Y.S., MEHDIZADEH F., All-optical 6- and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods, Photonic Network Communications 34(2), 2017, pp. 248–257, DOI: 10.1007/s11107-017-0688-x.
  • [28] KANNAIYAN V., SAVARIMUTHU R., DHAMODHARAN S.K., Performance analysis of an eight channel demultiplexer using a 2D-photonic crystal quasi square ring resonator, Opto-Electronics Review 25(2), 2017, pp. 74–79, DOI: 10.1016/j.opelre.2017.05.003.
  • [29] VENKATACHALAM K., KUMAR D.S., ROBINSON S., Investigation on 2D photonic crystal-based eight -channel wavelength-division demultiplexer, Photonic Network Communications 34(1), 2017, pp. 100 –110, DOI: 10.1007/s11107-016-0675-7.
  • [30] XUAN ZHANG, QINGHUA LIAO, TIANBAO YU, NIANHUA LIU, YONGZHEN HUANG, Novel ultracompact wave-length division demultiplexer based on photonic band gap, Optics Communications 285(3), 2012, pp. 274–276, DOI: 10.1016/j.optcom.2011.10.001.
  • [31] LIAO QING-HUA, FAN HONG-MING, CHEN SHU-WEN, WANG TONG-BIAO, YU TIAN-BAO, HUANG YONG-ZHEN, The design of large separating angle ultracompact wavelength division demultiplexer based on photonic crystal ring resonators, Optics Communications 331, 2014, pp. 160–164, DOI: 10.1016/j.opt com.2014.05.056.
  • [32] ALIPOUR-BANAEI H., SERAJMOHAMMADI S., MEHDIZADEH F., All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators, Optik 125(19), 2014, pp. 5701–5704, DOI: 10.1016/ j.ijleo.2014.06.013.
  • [33] AREED N.F.F., EL FAKHARANY A., HAMEED M.F.O., OBAYYA S.S.A., Controlled optical photonic crystal AND gate using nematic liquid crystal layers, Optical and Quantum Electronics 49(1), 2017, article ID 45, DOI: 10.1007/s11082-016-0852-z.
  • [34] PIRZADI M., MIR A., BODAGHI D., Realization of ultra-accurate and compact all-optical photonic crystal or logic gate, IEEE Photonics Technology Letters 28(21), 2016, pp. 2387–2390, DOI: 10.1109/ LPT.2016.2596580.
  • [35] SERAJMOHAMMADI S., ABSALAN H., All optical NAND gate based on nonlinear photonic crystal ring resonator, Information Processing in Agriculture 3(2), 2016, pp. 119–123, DOI: 10.1016/j.inpa.20 16.04.002.
  • [36] GOUDARZI K., MIR A., CHAHARMAHALI I., GOUDARZI D., All-optical XOR and OR logic gates based on line and point defects in 2-D photonic crystal, Optics and Laser Technology 78(Part B), 2016, pp. 139–142, DOI: 10.1016/j.optlastec.2015.10.013.
  • [37] RANI P., KALRA Y., SINHA R.K., Design and analysis of polarization independent all-optical logic gates in silicon-on-insulator photonic crystal, Optics Communications 374, 2016, pp. 148–155, DOI: 10.1016/j.optcom.2016.04.037.
  • [38] JUNJIE BAO, JUN XIAO, LIN FAN, XIAOXU LI, YUNFEI HAI, TONG ZHANG, CHUNBO YANG, All-optical NOR and NAND gates based on photonic crystal ring resonator, Optics Communications 329, 2014, pp. 109–112, DOI: 10.1016/j.optcom.2014.04.076.
  • [39] D’SOUZA N.M., MATHEW V., Interference based square lattice photonic crystal logic gates working with different wavelengths, Optics and Laser Technology 80, 2016, pp. 214–219, DOI: 10.1016/j.opt lastec.2016.01.014.
  • [40] YI-PIN YANG, KUEN-CHERNG LIN, I-CHEN YANG, KUN-YI LEE, YEN-JUEI LIN, WEI-YU LEE, YAO-TSUNG TSAI, All-optical photonic crystal AND gate with multiple operating wavelengths, Optics Communications 297, 2013, pp. 165–168, DOI: 10.1016/j.optcom.2013.01.035.
  • [41] MEHDIZADEH F., SOROOSH M., ALIPOUR-BANAEI H., FARSHIDI E., Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure, Applied Optics 56(7), 2017, pp. 1799–1806, DOI: 10.1364/AO.56.001799.
  • [42] MEHDIZADEH F., SOROOSH M., ALIPOUR-BANAEI H., FARSHIDI E., All optical 2-bit analog to digital converter using photonic crystal based cavities, Optical and Quantum Electronics 49(1), 2017, article ID 38, DOI: 10.1007/s11082-016-0880-8.
  • [43] TAVOUSI A., MANSOURI-BIRJANDI M.A., SAFFARI M., Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators, Physica E: Low-dimensional Systems and Nanostructures 83, 2016, pp. 101–106, DOI: 10.1016/j.physe.2016.0 4.007.
  • [44] TAVOUSI A., MANSOURI-BIRJANDI M.A., Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators, Superlattices and Microstructures 114, 2018, pp. 23–31, DOI: 10.1016/j.spmi.2017.11.021.
  • [45] RAHMANI A., MEHDIZADEH F., Application of nonlinear PhCRRs in realizing all optical half-adder, Optical and Quantum Electronics 50(1), 2018, article ID 30, DOI: 10.1007/s11082-017-1301-3.
  • [46] CHERAGHI F., SOROOSH M., AKBARIZADEH G., An ultra-compact all optical full adder based on non-linear photonic crystal resonant cavities, Superlattices and Microstructures 113, 2018, pp. 359–365, DOI: 10.1016/j.spmi.2017.11.017.
  • [47] NEISY M., SOROOSH M., ANSARI-ASL K., All optical half adder based on photonic crystal resonant cavities, Photonic Network Communications 35(2), 2018, pp. 245–250, DOI: 10.1007/s11107-01 7-0736-6.
  • [48] ANDALIB A., A novel proposal for all-optical Galois field adder based on photonic crystals, Photonic Network Communications 35(3), 2018, pp. 392–396, DOI: 10.1007/s11107-017-0756-2.
  • [49] QIANG LIU, ZHENGBIAO OUYANG, CHIH JUNG WU, CHUNG PING LIU, JONG C. WANG, All-optical half adder based on cross structures in two-dimensional photonic crystals, Optics Express 16(23), 2008, pp. 18992–19000, DOI: 10.1364/OE.16.018992.
  • [50] MEHDIZADEH F., ALIPOUR-BANAEI H., SERAJMOHAMMADI S., Design and simulation of all optical decoder based on nonlinear PhCRRs, Optik 156, 2018, pp. 701–706, DOI: 10.1016/j.ijleo.2017.12.011.
  • [51] DAGHOOGHI T., SOROOSH M., ANSARI-ASL K., A novel proposal for all-optical decoder based on photonic crystals, Photonic Network Communications 35(3), 2018, pp. 335–341, DOI: 10.1007/s11 107-017-0746-4.
  • [52] MEHDIZADEH F., ALIPOUR-BANAEI H., SERAJMOHAMMADI S., Study the role of non-linear resonant cavities in photonic crystal-based decoder switches, Journal of Modern Optics 64(13), 2017, pp. 1233 –1239, DOI: 10.1080/09500340.2016.1275854.
  • [53] MEHDIZADEH F., SOROOSH M., ALIPOUR-BANAEI H., A novel proposal for optical decoder switch based on photonic crystal ring resonators, Optical and Quantum Electronics 48(1), 2016, article ID 20, DOI: 10.1007/s11082-015-0313-0.
  • [54] MONIEM T.A., All optical active high decoder using integrated 2D square lattice photonic crystals, Journal of Modern Optics 62(19), 2015, pp. 1643–1649, DOI: 10.1080/09500340.2015.1061061.
  • [55] ALIPOUR-BANAEI H., RABATI M.G., ABDOLLAHZADEH-BADELBOU P., MEHDIZADEH F., Application of self-collimated beams to realization of all optical photonic crystal encoder, Physica E: Low-dimensional Systems and Nanostructures 75, 2016, pp. 77–85, DOI: 10.1016/j.physe.2015.08.011.
  • [56] MEHDIZADEH F., SOROOSH M., ALIPOUR-BANAEI H., Proposal for 4-to-2 optical encoder based on photonic crystals, IET Optoelectronics 11(1), 2017, pp. 29–35, DOI: 10.1049/iet-opt.2016.0022.
  • [57] MONIEM T.A., All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators, Journal of Modern Optics 63(8), 2016, pp. 735–741, DOI: 10.1080/09500340.2015.1094580.
  • [58] HASSANGHOLIZADEH-KASHTIBAN M., SABBAGHI-NADOOSHAN R., ALIPOUR-BANAEI H., A novel all optical reversible 4×2 encoder based on photonic crystals, Optik 126(20), 2015, pp. 2368–2372, DOI: 10.1016/j.ijleo.2015.05.140.
  • [59] OUAHAB I., NAOUM R., A novel all optical 4 × 2 encoder switch based on photonic crystal ring resonators, Optik 127(19), 2016, pp. 7835–7841, DOI: 10.1016/j.ijleo.2016.05.080.
  • [60] HAQ SHAIK E., RANGASWAMY N., Improved design of all-optical photonic crystal logic gates using T-shaped waveguide, Optical and Quantum Electronics 48(1), 2016, article ID 33, DOI: 10.1007/ s11082-015-0279-y.
  • [61] SALMANPOUR A., MOHAMMADNEJAD S., OMRAN P.T., All-optical photonic crystal NOT and OR logic gates using nonlinear Kerr effect and ring resonators, Optical and Quantum Electronics 47(12), 2015, pp. 3689–3703, DOI: 10.1007/s11082-015-0238-7.
  • [62] RANI P., KALRA Y., SINHA R.K., Realization of AND gate in Y shaped photonic crystal waveguide, Optics Communications 298–299, 2013, pp. 227–231, DOI: 10.1016/j.optcom.2013.02.014.
  • [63] YULAN FU, XIAOYONG HU, QIHUANG GONG, Silicon photonic crystal all-optical logic gates, Physics Letters A 377(3–4), 2013, pp. 329–333, DOI: 10.1016/j.physleta.2012.11.034.
  • [64] YU-CHI JIANG, SHAO-BIN LIU, HAI-FENG ZHANG, XIANG-KUN KONG, Reconfigurable design of logic gates based on a two-dimensional photonic crystals waveguide structure, Optics Communications 332, 2014, pp. 359–365, DOI: 10.1016/j.optcom.2014.07.038.
  • [65] WEIJIA LIU, DAQUAN YANG, GUANSHENG SHEN, HUIPING TIAN, YUEFENG JI, Design of ultra compact all-optical XOR, XNOR, NAND and OR gates using photonic crystal multi-mode interference waveguides, Optics and Laser Technology 50, 2013, pp. 55–64, DOI: 10.1016/j.optlastec.2012.12.030.
  • [66] TAFLOVE A., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 1995.
  • [67] JOHNSON S.G., JOANNOPOULOS J.D., Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis, Optics Express 8(3), 2001, pp. 173–190, DOI: 10.1364/OE.8.000173.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba8d59c5-9e53-4375-ab1b-699233a10ade
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.