PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statistics of tropospheric amplitude scintillation over selected locations in tropical Nigeria

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tropospheric scintillation depends signifcantly on any location’s prevailing weather condition, and its variation must be statistically analyzed to ensure accurate fade margin determination. This study examines the distribution of Ku-band amplitude scintillation across selected locations in tropical Nigeria. Eight years of daily averaged data of surface temperature and relative humidity were employed for computing scintillation intensity (σ) and amplitude (χ) using international telecommunications union recommended model across eighteen (18) stations, that are subdivided into four (4) regions and spread over tropical Nigeria. The data, spanning January 2010 to December 2017, were obtained from the archive of the European center for medium-range weather forecasts (ECMWF) with a resolution of 0.125° by 0.125°. Three (3) years of in-situ data of concurrently measured satellite radio beacons and primary radio-climatic parameters at Akure (7° 17′ N, 5° 18′ E, 358 m), South-west Nigeria, were employed for comparison and validation. Statistical analyses involving time series, probability density, and cumulative distribution functions were performed on the scintillation dataset annually. Results indicate that the magnitude of tropospheric amplitude scintillation varies across diferent locations; nevertheless, it exhibits a similar distribution pattern characterized by the generalized extreme value (GEV) probability density function (pdf). The study has shown the need to incorporate the scintillation component into the fade mitigation architecture of telecommunication systems in tropical Nigeria while considering its regional variability. Also, experimental validation of the observations raised in this study should be encouraged at all the locations for better prediction accuracy.
Czasopismo
Rocznik
Strony
947--957
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
  • Department of Physics, Federal University of Technology, PMB 704, Akure, Nigeria
  • Department of Physics, Federal University of Technology, PMB 704, Akure, Nigeria
  • Department of Physics, Federal University of Technology, PMB 704, Akure, Nigeria
  • Department of Physics, Federal University of Technology, PMB 704, Akure, Nigeria
  • Department of Physics, Federal University of Technology, PMB 704, Akure, Nigeria
Bibliografia
  • 1. Adebo B, Akindugbagbe J (2019) Prediction of tropospheric scintillation over some selected locations in Nigeria. J Am Sci 15(3):72–77
  • 2. Adediji AT, Ajewole MO (2010) Microwave anomalous propagation (AP) measurement over Akure south-western Nigeria. J Atmos Solar Terr Phys 72(5–6):550–555
  • 3. Adediji AT, Ajewole MO, Ojo JS, Ashidi AG, Ismail M, Mandeep JS (2015) Influence of some meteorological factors on tropospheric radio refractivity over a tropical location in Nigeria. Mausam 66(January (1)):123–128
  • 4. Akande A, Costa AC, Mateu J, Henriques R (2017) Geospatial analysis of extreme weather events in Nigeria (1985–2015) using self-organizing maps. Adv Meteorol. https://doi.org/10.1155/2017/8576150
  • 5. Akinwumi SA, Omotosho TV, Usikalu MR, Adagunodo TA, Adewusi MO, Ometan OO (2018) Analysis and comparison of tropospheric scintillation prediction models at Covenant University. IOP Conf Ser Earth Environ Sci 173(1):012015
  • 6. Ashidi AG (2020) Ku-band scintillation over Akure, Nigeria. IOP SciNotes 1(3):034403. https://doi.org/10.1088/2633-1357/abcd28
  • 7. Ashidi AG, Ojo JS, Adediji AT, Ajewole MO (2017) Characterization of Ku-band amplitude scintillation on Earth-Space Path over Akure, SW Nigeria. In: Proceeding of XXXII general assembly and scientific symposium, URSI
  • 8. Ashidi AG, Ogunjo ST, Akinmoladun TM (2019) Distribution analysis and autoregressive modelling of ultraviolet radiation over Akure, Nigeria. Int J Environ Health 9(4):289–305
  • 9. Ashidi AG, Dada JB, Lawal YB (2020) Spectral analysis of Ku-Band scintillation dataset for satellite communication in a tropical location. In: 2020 international conference in mathematics, computer engineering and computer science (ICMCECS). IEEE, pp 1–5
  • 10. Ashidi A, Ojo J, Adediji A, Ajewole O (2021) Development and performance evaluation of tropospheric scintillation model on Ku-band satellite link over Akure, Nigeria. Adv Space Res 67(5):1612–1622. https://doi.org/10.1016/j.asr.2020.12.001
  • 11. Chen CY, Singh MJ (2014) Comparison of tropospheric scintillation prediction models of the Indonesian climate. Earth Planets Space 66(1):64
  • 12. Fuwape IA, Ogunjo ST, Dada JB, Ashidi GA, Emmanuel I (2016) Phase synchronization between tropospheric radio refractivity and rainfall amount in a tropical region. J Atmos Solar Terr Phys 149:46–51. https://doi.org/10.1016/j.jastp.2016.09.009
  • 13. Garcia-del-Pino P, Riera JM, Benarroch A (2011) Tropospheric scintillation with concurrent rain attenuation at 50 GHz in Madrid. IEEE Trans Antennas Propag 60(3):1578–1583
  • 14. ITU-R (2015) Propagation data and prediction methods required for the design of Earth-space telecommunication systems. Recommendation ITU-R, 618-12
  • 15. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen–Geiger climate classification updated. Meteorol Z 15(3):259–263
  • 16. Mandeep JS, Syed SH, Kiyoshi I, Kenji T, Mitsuyoshi I (2006) Analysis of tropospheric scintillation intensity on earth to space in Malaysia. Am J App Sci 3(9):2029–2032
  • 17. Mandeep JS, Yee ACC, Abdullah M, Tariqul M (2011) Comparison and analysis of tropospheric scintillation models for Northern Malaysia. Acta Astronaut 69(1–2):2–5
  • 18. Moulsley TJ, Vilar E (1982) Experimental and theoretical statistics of microwave amplitude scintillations on satellite down-links. IEEE Trans Antennas Propag 30(6):1099–1106
  • 19. Ojo JS, Falodun SE (2012) NECOP propagation experiment: rain rate distributions observations and prediction model comparisons. Int J Antenna Propag 12(12):913596
  • 20. Ojo JS, Ajewole MO, Sarkar SK (2008) Rain rate attenuation prediction for satellite communication in Ku and Ka bands over Nigeria. Prog Electromagn Res B 5:207–223
  • 21. Ojo JS, Ajewole MO, Emiliani LD (2009) One-minute rain rate contour maps for microwave-communication-system planning in a tropical country: Nigeria. IEEE Antennas Propag 51(5):82–89
  • 22. Ojo JS, Rabiu B, Radicella SM, Obiyemi OO (2018) Experimental analysis and comparison of tropospheric scintillation prediction models using eutelsat-36b satellite in a tropical Nigeria. Int J Basic Appl Sci 7(1):8–14
  • 23. Ojo OS, Adeyemi B, Ogolo EO (2019) Assessments of the night-time and daytime radiative fluxes balance in the seasonal timescale over west Africa. J Atmos Solar Terr Phys 191:105048
  • 24. Ojo OS, Adedayo KD, Ashidi AG, Oladayo OI (2020) Empirical modelling of net radiation from temperature indices using different multiple regression techniques over Nigeria. Eur Int J Sci Technol 9(1):12–34
  • 25. Omotosho TV, Oluwafemi CO (2009) One minute rain rate distribution in Nigeria derived from TRMM satellite data. J Atmos Solar Terr Phys 71(5):625–633
  • 26. Omotosho TV, Akinwumi SA, Usikalu MR, Ometan OO, Adewusi MO (2016) Tropospheric scintillation and its impact on earth-space satellite communication in Nigeria. In: 2016 IEEE radio and antenna days of the Indian Ocean (RADIO). IEEE, pp 1–2
  • 27. Otung IE (1996) Prediction of tropospheric amplitude scintillation on a satellite link. IEEE Trans Antennas Propag 44(12):1600–1608
  • 28. Rahim NBA, Islam MR, Mandeep JS, Dao H, Bashir SO (2013) Tropospheric scintillation prediction models for a high elevation angle based on measured data from a tropical region. J Atmos Solar Terr Phys 105:91–96
  • 29. Singh MSJ, Hassan SIS (2003) Probability density function of tropospheric amplitude scintillation on a satellite link. In: 4th national conference of telecommunication technology, 2003. NCTT 2003 proceedings. IEEE, pp 102–105
  • 30. Singh MSJ, Hassan SIS (2004) Comparison of 1-minute rainfall rate distributions for tropical and equatorial climates. Space Commun 19(3–4):193–198
  • 31. World Meteorological Organization (WMO) (2010) Manual on the global data processing and forecasting system, WMO 485, Geneva, Switzerland. http://www.wmo.int/pages/prog/www/DPFS/Manual_GDPFS.html
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba893ed8-ea65-4894-ad7a-a164db931e37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.