PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lyapunov stability based sliding mode observer for sensorless control of permanent magnet synchronous motor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years there has been an increasing demand for electric vehicles due to their attractive features including low pollution and increase in efficiency. Electric vehicles use electric motors as primary motion elements and permanent magnet machines found a proven record of use in electric vehicles. Permanent magnet synchronous motor (PMSM) as electric propulsion in electric vehicles supersedes the performance compared to other motor types. However, in order to eliminate the cumbersome mechanical sensors used for feedback, sensorless control of motors has been proposed. This paper proposes the design of sliding mode observer (SMO) based on Lyapunov stability for sensorless control of PMSM. The designed observer is modeled with a simulated PMSM model to evaluate the tracking efficiency of the observer. Further, the SMO is coded using MATLAB/Xilinx block models to investigate the performance at real-time.
Rocznik
Strony
art. no. e140353
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Department of Instrumentation and Control Systems Engineering, PSG College of Technology, Coimbatore-641004, Tamilnadu, India
  • Department of Electrical and Electronics Engineering, PSG College of Technology, Coimbatore-641004, Tamilnadu, India
  • Department of Instrumentation and Control Systems Engineering, PSG College of Technology, Coimbatore-641004, Tamilnadu, India
Bibliografia
  • [1] X. Wang and S. Wang, “Adaptive fuzzy robust control of PMSM with smooth inverse based dead-zone compensation,” Int. J. Control. Autom. Syst., vol. 14, no. 2, pp. 378–388, 2016, doi: 10.1007/s12555-015-0010-6.
  • [2] A.K. Junejo, W. Xu, C. Mu, M.M. Ismail, and Y. Liu, “Adaptive Speed Control of PMSM Drive System Based a New Sliding-Mode Reaching Law,” IEEE Trans. Power Electron., vol. 35, no. 11, pp. 12110–12121, 2020, doi: 10.1109/TPEL.2020.298689.
  • [3] A.M.O Anwer, F.A. Omar, and A.A. Kulaksiz, “Design of a Fuzzy Logic-based MPPT Controller for a PV System Employing Sensorless Control of MRAS-based PMSM,” Int. J. Control. Autom. Syst., vol. 18, no. 11, pp. 2788–2797, 2020, doi: 10.1007/s12555-019-0512-8.
  • [4] W.H. Chen, “Disturbance observer based control for nonlinear systems,” IEEE/ASME Trans. Mechatron., vol. 9, no. 4, pp. 706–710, 2004, doi: 10.1109/TMECH.2004.839034.
  • [5] P. Naghshtabrizi and J.P. Hespanha, “Designing an observer-based controller for a network control system,” in Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference CDC-ECC’05, 2005, pp. 848–853, doi: 10.1109/CDC.2005.1582263.
  • [6] T.D. Batzel and K.Y. Lee, “Commutation torque ripple minimization for permanent magnet synchronous machines with Hall effect position feedback,” IEEE Trans. Energy Convers., vol. 13, no. 3, pp. 257–262, 1998, doi: 10.1109/60.707605.
  • [7] J. Hu, J. Zou, F. Xu, Y. Li, and Y. Fu, “An improved PMSM rotor position sensor based on linear Hall sensors,” IEEE Trans. Magn. vol. 48, no. 11, pp. 3591–3594, 2012, doi: 10.1109/TMAG.2012.2202279.
  • [8] J. Niewiara, T. Tarczewski, and L.M. Grzesiak, “Application of extended Kalman filter for estimation of periodic disturbance and velocity ripple reduction in PMSM drive,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 4, pp. 983–995, 2020, doi: 10.24425/bpasts.2020.134649.
  • [9] L.A. Jones and J.H Lang, “A State Observer for the Permanent-Magnet Synchronous Motor,” IEEE Trans. Ind. Electron. vol. 36, no. 3, pp. 374–382, 1989, doi: 10.1109/41.31500.
  • [10] H. Rasmuseen, “Sensorless speed control including zero speed of non salient PM synchronous drives,” Bull. Polish Acad. Sci. Tech. Sci., vol. 54, no. 3, pp. 293–298, 2006.
  • [11] J. Yang, M. Dou, and D. Zhao, “Iterative sliding mode observer for sensorless control of five-phase permanent magnet synchronous motor,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 6, pp. 845–857, 2017, doi: 10.1515/bpasts-2017-0092.
  • [12] Y. Zhao and X. Liu, “Speed Control for PMSM Based on Sliding Mode Control With a Nonlinear Disturbance Observer,” in Proceedings – 2019 Chinese Automation Congress, CAC 2019, 2019, pp. 634–639, doi: 10.1109/CAC48633.2019.8996376.
  • [13] Z.Y Zhang, L. Bao Zhang, and H. Wang, “Research on PMSM Position Sensorless Control Based on Improved Sliding Mode Observer,” in 2019 22nd International Conference on Electrical Machines and Systems, ICEMS 2019, 2019, doi: 10.1109/ICEMS.2019.8921816.
  • [14] A.G. Daniel, “Sliding-Mode Observer For Sensorless Control Of Permanent Magnet Synchronous Motor Drives,” J. Cont. Eng. App. Inf., vol. 5, no. 1, pp.27–34, 2003.
  • [15] S. Wu and J. Zhang, “A Terminal Sliding Mode Observer Based Robust Backstepping Sensorless Speed Control for Interior Permanent Magnet Synchronous Motor,” Int. J. Control. Autom. Syst., vol. 16, no. 6, pp. 2743–2753, 2018, doi: 10.1007/s12555-017-0806-7.
  • [16] R. Krishnan, Electric Motor Drives: Modeling, Analysis, Prentice-Hall, New Jersy, 2011.
  • [17] L. Sun, X. Zhang, L. Sun, and K. Zhao, “Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques,” IEEE Trans.Power Electron., vol. 28, no. 3, pp. 1358-1365, 2013, doi: 10.1109/TPEL.2012.2206610.
  • [18] B.T. Zhang, Y.G. Pi, and Y. Luo, “Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor,” ISA Trans., vol. 51, no. 5, pp. 649–656, 2012, doi: 10.1016/j.isatra.2012.04.006.
  • [19] S.Z. Zhang X.L. Ma, “A PMSM sliding-mode control system based-on exponential reaching law,” in Proc. International Conference on Computational Aspects of Social Networks, CASoN’10, 2010, pp.412–414, doi: 10.1109/CASoN.2010.100.
  • [20] S. Navaneethan and J. Jerome, “Speed control of Permanent Magnet Synchronous Motor using Power Reaching Law based Sliding Mode Controller,” WSEAS Trans. Syst. Control, vol. 10 pp. 270–277, 2015.
  • [21] H.Wang, B. Zhou, and S. Fang, “A PMSM sliding mode control system based on exponential reaching law,” Trans. China Electr. Tech. Soc., vol. 24, pp. 71–77, 2009.
  • [22] Z. Qiao, T. Shi, Y. Wang, Y. Yan, C. Xia, and X. He, “New sliding-mode observer for position sensorless control of permanent-magnet synchronous motor,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 710–719, 2013, doi: 10.1109/TIE.2012.2206359.
  • [23] Y. Feng, J. Zheng, X. Yu, and N.V. Truong, “Hybrid terminal sliding-mode observer design method for a permanent-magnet synchronous motor control system,” IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3424–3431, 2009, doi: 10.1109/TIE.2009.2025290.
  • [24] Y.S. Jung and M.G. Kim, “Sliding mode observer for sensorless control of IPMSM drives,” J. Power Electron., vol. 9, no. 1, pp. 117–123, 2009.
  • [25] A. Polyakov and L. Fridman, “Stability notions and Lyapunov functions for sliding mode control systems,” J. Franklin Inst., vol. 351, no. 4, pp. 1831–1865, 2014, doi: 10.1016/j.jfranklin.2014.01.002.
  • [26] M. Rezkallah, S.K. Sharma, A. Chandra, B. Singh, and D.R. Rousse, “Lyapunov Function and Sliding Mode Control Approach for the Solar-PV Grid Interface System,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 785–795, 2017, doi: 10.1109/TIE.2016.2607162.
  • [27] J. Kabzinski and P. Mosiolek, “Adaptive, nonlinear state transformation-based control of motion in presence of hard constraints,” Bull. Pol. Acad. Sci. Tech. Sci. vol. 68, no. 5, pp. 963–971, 2020, doi: 10.24425/bpasts.2020.134653.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba87d40d-4721-49a8-9fca-0f0b4adfce51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.