Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of an experiment related to wildlife inventory control with the use of data from terrestrial laser scanning. The measurements were performed with the terrestrial laser scanning system – Riegl VZ-400i. The study area was the Obrońców Westerplatte square in Wrocław. The collected measurement data were pre-processed in a commercial – dedicated RiSCAN Pro environment. Operations related to point cloud georeferencing and its filtering were performed. The tree parameters were measured on the basis of a cloud point obtained in field surveys. This operation was performed with the use of the 3D Forest software. The investigations covered the main parameters of the tree (height and diameter) along with additional parameters, such as the distance between two points of the tree located furthest apart, the surface area of the orthogonal projection of the tree on the reference surface (terrain surface) and the height of the tree crown above the terrain surface. As a result of the performed analyses, an inventory of 70 trees was made within the Obrońców Westerplatte square in Wrocław. Part of the experiment was also to prepare a 3D model of a tree by using some available modeling algorithms. This part was performed in Sequoia software - dedicated to such operations. The software offers three modeling algorithms: Zhu/Bridson, metaballs and union of spheres.
Czasopismo
Rocznik
Tom
Strony
57--79
Opis fizyczny
Bibliogr. 8 poz., rys., tab.
Twórcy
autor
- Wrocław University of Science and Technology ul. S. Wyspiańskiego 27 50-370 Wrocław
autor
- Wrocław University of Science and Technology ul. S. Wyspiańskiego 27 50-370 Wrocław
Bibliografia
- Dudkiewicz M., Dąbski M., Durlak W. 2015. Dendroflora zabytkowego parku w Kijanach. Acta Sci. Pol., ser. Formatio Circumiectus, 14, 1, 15–25.
- Dusza-Zwolinska E., Dembowska M. 2018. Do czego potrzebne są inwentaryzacje dendrologiczne? Aura, 3.
- Häger A. 2022. Adapting the PIC/FLIP fluid simulation method to produce a LEGO water animation & evaluating its performance.
- Kommareddy S., Siripun J., Sum J. 2014. 3D Object Morphing with Metaballs. http://www.evl.uic.edu/creativecoding/cs488/finalprojects/metaball/metaball.pdf [access date: November 2018].
- Král K., Krůček M., Trochta J. 2018. 3D Forest. 3dforest.eu [access date: November 2018].
- Ranjan V., Fournier A. 1996. Creating union of spheres models from multiple views. Journal of Graphics Tools, 1(4), 21–39.
- Szostak M., Wężyk P. 2013. Pomiary GNSS w przestrzeni leśnej przy wykorzystaniu różnej klasy odbiorników oraz wybranych trybów pomiaru. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 25, 217–231.
- Wężyk P., Szostak M., Rysiak P., Zięba K., Hawryło P. 2015. Dąb Bartek 3D – naziemne skanowanie laserowe 3D pomników przyrody – nowy wymiar edukacji przyrodniczej. Stud. i Mater. CEPL w Rogowie, 17, 43/2, 7–15.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba8558a9-b684-4da1-8a4b-739c1751d4e9