Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Effective shock absorption of the body in the presence of excitations of a random nature results in the necessity of using vibration dampers. The classic solution is the viscous damper, which works by dissipating mechanical energy in the form of heat generated to the external environment. The characteristics of the flexible components in car suspensions (elastic and damping) affect the transfer of mechanical energy. The purpose of the research was to develop a method for assessing the impact of damping in a suspension system on the transfer of mechanical energy from unsprung masses to the body. The assumed research goal was carried out on a vehicle model with two degrees of freedom, whose parameters corresponded to the real object. The developed method uses energy relationships occurring between selected variables of the vibrating motion of inertial elements of a motor vehicle. The results obtained during simulation tests were empirically verified on a real object. The proposed method allows to assess how the damping in the suspension system affects the energy relationships occurring in the vehicle suspension vibrating motion.
Czasopismo
Rocznik
Tom
Strony
art. no. 2019218
Opis fizyczny
Bibliogr. 23 poz., 1 rys. kolor., wykr.
Twórcy
autor
- Silesian University of Technology, Faculty of Transport, Krasińskiego street 8, 40-019 Katowice
Bibliografia
- 1. Cheng Liu, Guowei Cai, Deyou Yang, Design nonlinear robust damping controller for static synchronous series compensator based on objective holographic feedback-HN, Advances in Mechanical Engineering, 8(6) (2016) 1 - 11.
- 2. F. C. Crawford, Waves, PWN, Warszawa 1972.
- 3. Z. Dąbrowski, J. Pankiewicz, Diagnosing a Vehicle’s Suspension System on the Basis of the Non-linear Efects of the Dynamic Response, Machine Dynamic Problems, 26(2/3) (2002).
- 4. J. C. Dixon, The Shock Absorber Handbook. Society of Automotive Engineers, Warrendale, PA, 1999.
- 5. U. Ferdek, J. Łuczko, Vibration analysis of a half-car model with semi-active damping, Journal of Theoretical And Applied Mechanics, 54(2) 321 - 332.
- 6. T. D. Gillespie, Fundamentals of Vehicle Dynamics, Society of Automotive Engineers, Warrendale, PA, 1992.
- 7. N. Giorgetti, A. Bemporad, H. E. Tseng, D. Hrovat, Hybrid model predictive control application towards optimal semi-active suspension, Int. J. Control, 79(5) (2006) 521 - 533.
- 8. E. Guglielmino, A. Edge Kevin, A controlled friction damper for vehicle applications, Control Engineering Practice, 12 (2004) 431 - 443.
- 9. Hailong Zhang, Enrong Wang, Fuhong Min, Ning Zhang, Chunyi Su, Subhash Rakheja, Nonlinear Dynamics Analysis of the Semiactive Suspension System with Magneto-Rheological Damper. Shock and Vibration, Volume 2015.
- 10. I. M. Ibrahim, D. A. Crolla, D. C. Barton, Effect of frame flexibility on the ride vibration of trucks, Compurers d Structures, 58(4) (1996) 709 - 113.
- 11. S. Rakheja, S. Sankar, Vibration and shock isolation performance of a semi-active “on-off” damper, J. Vib. Acoust. Stress Reliab. Des., 107 (1985) 398 - 403.
- 12. M. Ieluzzi, P. Turco, M. Montiglio, Development of a heavy truck semi-active suspension control, Control Engineering Practice, 14 (2006) 305 - 312.
- 13. D. C. Karnopp, M. J. Crosby, R. A. Harwood, Vibration control using semi-active force generators, Trans ASME: J Eng Ind, (1974) 619 - 26.
- 14. Ł. Konieczny, R. Burdzik, J. Warczek, Research on dynamics of car suspension system in MSC. Adams software. Dynamical systems. Control and stability. Łódź: Wydaw. Politechniki Łódzkiej, (2015) 317 - 326.
- 15. G. Litak, M. Borowiec, M. I. Friswell, K. Szabelski, Chaotic vibration of a quartercar model excited by the road surface profile, Communications in Nonlinear Science and Numerical Simulation, 13 (2008) 1373 - 1383.
- 16. L. I. Nkomo, A. Dove, M. T. Ngwako, O. T. Nyandoro, Control for ride comfort and actuation energy optimisation in half-car suspension systems, IFAC Papers On Line 50-2 (2017) 259 - 264.
- 17. G. Rill, Vehicle dynamics. University of Applied Sciences, 2006.
- 18. I. M. Ryabova, K. V. Chernyshova, A. V. Pozdeeva, Energy Analysis of Vehicle Suspension Oscillation Cycle,Procedia Engineering, 150 (2016) 384 - 392.
- 19. M. Siewe Siewe, Resonance, stability and period-doubling bifurcation of a quartercar model excited by the road surface profile, Physics Letters A, 374 (2010) 1469 - 1476.
- 20. J. Warczek, R. Burdzik, Ł. Konieczny, Analysis of the forces generated in the shock absorber for conditions similar to the excitation caused by road roughness, Dynamical systems: theoretical and experimental analysis, Łódź, Poland, December 7-10, 2015. Ed. Jan Awrejcewicz. Berlin : Springer International Publishing, (2016) 373 - 383.
- 21. J. Warczek, R. Burdzik, Ł. Konieczny, The concept of autonomous damper in vehicle suspension, Dynamical Systems in Applications. DSTA 2017, Łódź, Poland December 11-14, 2017. Ed.: Jan Awrejcewicz. Cham : Springer, 2018, (Springer Proceedings in Mathematics & Statistics ; vol. 249 2194-1009) pp. 401 - 410.
- 22. J. Warczek, Research of damping influence for the transmission of energy in multimasses systems, Vibroengineering Procedia, 19 (2018) 32 - 35.
- 23. Y. Xiong, A. Tuononen, Rolling deformation of truck tires: Measurement and analysis using a tire sensing approach ,Journal of Terramechanics, 61 (2015) 33 - 42.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba6c2416-9c37-4ede-a82b-4f4c34e9a381