PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance Evaluation of Multipurpose Solar Heating System

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to increase the heat transfer and thermal performance of solar collectors, a multipurpose solar collector is designed and investigated experimentally by combining the solar water collector and solar air collector. In this design, the storage tank of the conventional solar water collector is modified as riser tubes and header and is fitted in the bottom of the solar air heater. This paper presents the study of fluid flow and heat transfer in a multipurpose solar air heater by using Computational Fluid Dynamics (CFD) which reduces time and cost. The result reveals that in the multipurpose solar air heater at load condition, for flow rate of 0.0176 m3/s m2, the maximum average thermal efficiency was 73.06% for summer and 67.15 % for winter season. In multipurpose solar air heating system, the simulated results are compared to experimental values and the deviation falls within ± 11.61% for summer season and ± 10.64% for winter season. It proves that the simulated (CFD) results falls within the acceptable limits.
Rocznik
Strony
359--370
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
  • Department of Mechanical Engineering Srinivasan Engineering College Perambalur, Tamilnadu, India
autor
  • Department of Mechanical Engineering K. Ramakrishnan College of Technology Samayapuram, Trichy, Tamilnadu, India
Bibliografia
  • [1] Al-Abbas, A. H. and Naser, J.: CFD modeling of air–fired and oxy–fuel combustion in a large–scale furnace at Loy Yang A brown coal power station, Fuel, 102, 646–665, 2012.
  • [2] Anderson, D. A., Tannehill, J. C. and Pletcher, R. H.: Computational fluid mechanics and heat transfer, Mc-Graw Hill Publications, New York, 1984.
  • [3] Chaube, A., Sahoo, P. K. and Solanki, S. C.: Analysis of heat transfer augmentation and flow characteristics due to rib roughness over absorber plate of a solar air heater, Renewable Energy, 31, 317–331, 2006.
  • [4] Ferziger, J. H. and Peric, M.: Computational for fluid dynamics, Springer Publications, Germany, 2002.
  • [5] Jaurker, A. R., Saini, J. S. and Gandhi, B. K.: Heat transfer and friction characteristics of rectangular solar air heater duct using rib-grooved artificial roughness, Solar Energy, 80, 895–907, 2006.
  • [6] Ong, K. S.: Thermal performance of solar air heaters: mathematical model and solution procedure, Sol. Energy, 55, 93–109, 1995.
  • [7] Karmare, S. V. and Tikekar, A. N.: Analysis of fluid and heat transfer in a rib roughened surface solar air heater using CFD, Solar Energy, 84, 409–417, 2010.
  • [8] Karwa, R. and Chauhan, K.: Performance evaluation of solar air heaters having v–down discrete rib roughness on the absorber plate, Energy, 35, 398–409, 2010.
  • [9] Gill, R. S., Singh, S. and Pal Singh, P.: Low cost solar air heater, Energy Conversion and Management, 57, 131–142, 2012.
  • [10] Sahu, M. M. and Bhagoria, J. L.: Augmentation of heat transfer coefficient by using 90o broken transverse ribs on absorber plate of solar air heater, Renewable Energy, 30, 2057–2073, 2005.
  • [11] Versteeg, H. K. and Malalasekera, W.: An introduction to computational fluid dynamics, The finite volume method, Longman Scientic and technical, Malasia, 30, 1345–1357, 1995.
  • [12] Whiller, A. and Saluja G.: Effect of materials and constructive details on the thermal performance of solar water heaters, Solar Energy, 9(1), 21, 1965.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba6b25e7-f33b-463e-8bd7-c1c1b37a3601
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.