PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical stability assessment of soft magnetic composites for biomedical applications

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Silicone-based elastic composites with a metallic filler have been strongly developed in recent years. These materials are considered applicable in many fields of science, including medicine. The advantageous mechanical parameters provided by the NdFeB micropowder reinforcement are balanced by the elasticity and biocompatibility guaranteed by the silicone matrix. So far, there have been several reports regarding such composites’ properties important from the biomedical point of view. The article deals with the physicochemical parameters of the new material for medical applications as well as the properties of the incubation liquid. The aim of the work was to determine effects of both the magnetic particles content (0, 30, 50, 70 wt%) and the incubation process under physiological conditions on the physicochemical properties of the material and the solution after incubation. The samples were incubated for various periods of time (8, 16 and 24 weeks) at the temperature of 37°C in a 0.9 wt% NaCl solution. The density, water contact angle, and water absorption of the materials were measured. The electrolytic conductivity, pH value, redox potential, surface tension, and kinematic viscosity were determined for the liquids after the materials incubation. The results obtained for pure silicone and the silicone-based composite reinforced with NdFeB microparticles were compared. The results indicate that incubation affects the samples and liquids, changing their physiochemical properties. For composites, the density decreased, which results in a noticeable concentration of the examined elements in the solutions.
Rocznik
Strony
2--8
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr., zdj.
Twórcy
  • Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15‑351 Bialystok, Poland
  • Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15‑351 Bialystok, Poland
autor
  • Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15‑351 Bialystok, Poland
  • ProMetheus, Institute Polytechnic of Viana do Castelo, 4900-347 Viana do Castelo, Portugal
  • Transport Phenomena Research Center, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/N, 4200-465 Porto, Portugal
  • Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15‑351 Bialystok, Poland
Bibliografia
  • [1] Mitragotri S., Lahann J.: Physical Approaches to Biomaterial Design. Nature Materials 8(1) (2009) 15-23.
  • [2] Zehnder J., Knoop E., Bächer M., Thomaszewski B.: Metasilicone. ACM Transactions on Graphics 36(6) (2017) 1-13.
  • [3] Ayers F., Grant A., Kuo D., Cuccia D. J., Durkin A.J.: Fabrication and Characterization of Silicone-Based Tissue Phantoms with Tunable Optical Properties in the Visible and near Infrared Domain; Nordstrom, R. J.Ed.; https://doi.org/10.1117/12.764969; p 687007.
  • [4] Kuncova-Kallio J., Kallio P.J.: PDMS and Its Suitability for Analytical Microfluidic Devices. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society; https://doi.org/10.1109/IEMBS.2006.260465; IEEE; 2486-2489.
  • [5] Kim J.H., Lau K.T., Shepherd R., Wu Y., Wallace G., Diamond D.: Performance Characteristics of a Polypyrrole Modified Polydimethyl‑siloxane (PDMS) Membrane Based Microfluidic Pump. Sensors and Actuators A: Physical 148(1) (2008) 239-244.
  • [6] Victor A., Ribeiro J., F. Araújo F.: Study of PDMS Characterization and Its Applications in Biomedicine: A Review. Journal of Mechanical Engineering and Biomechanics 4(1) (2019) 1-9.
  • [7] Casanova-Moreno J., To J., Yang C.W.T., Turner R.F.B., Bizzotto D., Cheung K.C.: Fabricating Devices with Improved Adhesion between PDMS and Gold-Patterned Glass. Sensors and Actuators B: Chemical 246 (2017) 904-909.
  • [8] Wang X., Mao G., Ge J., Drack M., Cañón Bermúdez G.S., Wirthl D., Illing R., Kosub T., Bischoff L., Wang C., Fassbender J., Kaltenbrunner M., Makarov D.: Untethered and Ultrafast Soft-Bodied Robots. Communications Materials 1(1) (2020) 67.
  • [9] Seyfoori A., Ebrahimi S.A.S., Omidian S., Naghib S. M.: Multifunctional Magnetic ZnFe2O4-Hydroxyapatite Nanocomposite Particles for Local Anti-Cancer Drug Delivery and Bacterial Infection Inhibition: An in Vitro Study. Journal of the Taiwan Institute of Chemical Engineers 96 (2019) 503-508.
  • [10] Tran K.A., Kraus E., Clark A.T., Bennett A., Pogoda K., Cheng X., Cē Bers A., Janmey P.A., Galie P.A.: Dynamic Tuning of Viscoelastic Hydrogels with Carbonyl Iron Microparticles Reveals the Rapid Response of Cells to Three-Dimensional Substrate Mechanics. ACS Applied Materials and Interfaces 13(18) (2021) 20947-20959.
  • [11] Iacovacci V., Lucarini G., Innocenti C., Comisso N., Dario P., Ricotti L., Menciassi A.: Polydimethylsiloxane Films Doped with NdFeB Powder: Magnetic Characterization and Potential Applications in Biomedical Engineering and Microrobotics. Biomedical Microdevices 17(6) (2015) 112.
  • [12] Dobson J.: Magnetic Nanoparticles for Drug Delivery. Drug Development Research 67(1) (2006) 55-60.
  • [13] Yüksel C.: The Use of Neodymium Magnets in Healthcare and Their Effects on Health. Northern Clinics of Istanbul.
  • [14] Zhou R., Surendran A.N., Mejulu M., Lin Y.: Rapid Microfluidic Mixer Based on Ferrofluid and Integrated Microscale NdFeB-PDMS Magnet. Micromachines 11(1) (2019) 29.
  • [15] Sitti M., Ceylan H., Hu W., Giltinan J., Turan M., Yim S., Diller E.: Biomedical Applications of Untethered Mobile Milli/Microrobots. Proceedings of the IEEE 103(2) (2015) 205-224.
  • [16] Peyer K.E., Zhang L., Nelson B.J.: Bio-Inspired Magnetic Swimming Microrobots for Biomedical Applications. Nanoscale 5(4) (2013) 1259-1272.
  • [17] Saint-Cricq P., Deshayes S., Zink J.I., Kasko A.M.: Magnetic Field Activated Drug Delivery Using Thermodegradable Azo-Functionalised PEG-Coated Core-Shell Mesoporous Silica Nanoparticles. Nanoscale 7(31) (2015) 13168-13172.
  • [18] Timko B.P., Dvir T., Kohane D.S.: Remotely Triggerable Drug Delivery Systems. Advanced Materials 22 (44) (2010) 4925-4943.
  • [19] Do V.T., Tang C.Y., Reinhard M., Leckie J.O.: Effects of Chlorine Exposure Conditions on Physiochemical Properties and Performance of a Polyamide Membrane - Mechanisms and Implications. Environmental Science & Technology 46(24) (2012), 13184-13192.
  • [20] Ducom G., Laubie B., Ohannessian A., Chottier C., Germain P., Chatain V.: Hydrolysis of Polydimethylsiloxane Fluids in Controlled Aqueous Solutions. Water Science and Technology 68(4) (2013) 813-820.
  • [21] Caulfield M.J., Qiao G.G., Solomon D.H.: Some Aspects of the Properties and Degradation of Polyacrylamides. Chemical Reviews 102(9) (2002) 3067-3084.
  • [22] Henkelman S., Rakhorst G., Blanton J., van Oeveren W.: Standardization of Incubation Conditions for Hemolysis Testing of Biomaterials. Materials Science and Engineering: C 29(5) (2009) 1650-1654.
  • [23] Donohue V.E., McDonald F., Evans R.: In Vitro Cytotoxicity Testing of Neodymium-Iron-Boron Magnets. Journal of Applied Biomaterials 6(1) (1995) 69-74.
  • [24] Evans R.D., McDonald F.: Effect of Corrosion Products (Neodymium Iron Boron) on Oral Fibroblast Proliferation. Journal of Applied Biomaterials 6(3) (1995) 199-202.
  • [25] Palmer R.J., Butenhoff J.L., Stevens J.B.: Cytotoxicity of the Rare Earth Metals Cerium, Lanthanum, and Neodymium in Vitro: Comparisons with Cadmium in a Pulmonary Macrophage Primary Culture System. Environmental Research 43(1) (1987) 142-156.
  • [26] Rim K.T., Koo K.H., Park J.S.: Toxicological Evaluations of Rare Earths and Their Health Impacts to Workers: A Literature Review. Safety and Health at Work 4(1) (2013) 12-26.
  • [27] Ali S., Abdul Rani A.M., Baig Z., Ahmed S.W., Hussain G., Subramaniam K., Hastuty S., Rao T.V.V.L.N.: Biocompatibility and Corrosion Resistance of Metallic Biomaterials. Corrosion Reviews 38(5) (2020) 381-402.
  • [28] Bakirdere S., Orenay S., Korkmaz M.: Effect of Boron on Human Health. The Open Mineral Processing Journal 3(1) (2010) 54-59.
  • [29] Nielsen F.H.: Update on Human Health Effects of Boron. Journal of Trace Elements in Medicine and Biology 28(4) (2014) 383-387.
  • [30] Uthamaraj S., Tefft B.J., Klabusay M., Hlinomaz O., Sandhu G.S., Dragomir-Daescu D.: Design and Validation of a Novel Ferromagnetic Bare Metal Stent Capable of Capturing and Retaining Endothelial Cells. Annals of Biomedical Engineering 42(12) (2014) 2416-2424.
  • [31] Niemirowicz-Laskowska K., Mystkowska J., Łysik D., Chmie‑
  • lewska S., Tokajuk G., Misztalewska-Turkowicz I., Wilczewska A.Z., Bucki R.: Antimicrobial and Physicochemical Properties of Artificial Saliva Formulations Supplemented with Core-Shell Magnetic Nanoparticles. International Journal of Molecular Sciences 21(6) (2020) 1979.
  • [32] Leśniewska B., Arciszewska Ż., Wawrzyńczak A., Jarmolińska S., Nowak I., Godlewska-Żyłkiewicz B.: Method Development for Determination of Trace Amounts of Palladium in Environmental Water Samples by ICP-MS/MS after Pre-Concentration on Thiol-Functionalized MCM-41 Materials. Talanta 217 (2020) 121004.
  • [33] Mystkowska J., Powojska A., Łysik D., Niewęgłowska J., Bermúdez G.S.C., Mystkowski A., Makarov D.: The Effect of Physiological Incubation on the Properties of Elastic Magnetic Composites for Soft Biomedical Sensors. Sensors 21(21) (2021) 7122.
  • [34] Mystkowska J., Car H. Dąbrowski J.R., Romanowska J., Klekotka M., Milewska A.M.: Artificial Mucin-based Saliva Preparations - Physicochemical and Tribological Properties. Oral Health & Preventive Dentistry 16(2) (2018).
  • [35] He X., Mu X., Wen Q., Wen Z., Yang J., Hu C., Shi H.: Flexible and Transparent Triboelectric Nanogenerator Based on High Performance Well-Ordered Porous PDMS Dielectric Film. Nano Res. 9 (2016) 3714-3724.
  • [36] Chuah Y.J., Koh Y.T., Lim K., Menon N.V., Wu Y., Kang Y.: Simple Surface Engineering of Polydimethylsiloxane with Poly‑dopamine for Stabilized Mesenchymal Stem Cell Adhesion and Multipotency. Sci. Rep. 5 (2016) 18162.
  • [37] Ruben B., Elisa M., Leandro L., Victor M., Gloria G., Marina S., Mian K.S., Pandiyan R., Nadhira L.: Oxygen Plasma Treatments of Polydimethylsiloxane Surfaces: Effect of the Atomic Oxygen on Capillary Flow in the Microchannels. Micro Nano Lett. 12 (2017), 754-757.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba6a716e-5c18-45bf-8a96-2579829b69ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.