PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Localized failure analysis of internally pressurized laminated ellipsoidal woven GFRP composite domes: Analytical, numerical, and experimental studies

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presented a systematic approach toward localized failure inspection of internally pressurized laminated ellipsoidal woven composite domes. The domes were made of thin glass fiber reinforced polymer (GFRP) woven composite layups [0,0,0], [0,30,0], [0,45,0], and [0,75,0]. The analytical results demonstrated that the circumferential regions near meridian w = 458 in prolate ellipsoidal domes and near meridian w = 908 in oblate ellipsoidal domes sustain the highest deformation under internal pressure. This observation was then confirmed by the numerical and experimental results. In addition, the numerical and experimental results showed localized rather than uniform failure in those regions, irrespective of changes in laminate stacking sequence. It was observed that localized failure occurs since the woven fibers configuration in some areas of woven remains in initial geometry (square shape), while the rests are deformed into the rhombic shape. In other words, by moving along the circumferential direction from the area close to u = 08 to u = 458 and u = 458 to u = 908, the shape of woven fibers gradually changes from square (strong area) to rhombic (weak area), and rhombic to square, respectively. Thus, to minimize failure pressure, the meridian region vulnerable to failure must initially be identified. Afterwards, the rhombic regions in the circumference corresponding to that meridian must be strengthened.
Rocznik
Strony
1235--1250
Opis fizyczny
Bibliogr. 30 poz., fot., rys., wykr.
Twórcy
  • Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
  • College of Engineering and Science, Victoria University, Melbourne, VIC 8001, Australia
  • Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
  • Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
  • Institute of Functional Interface, KIT Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein- Leopoldschafen, Germany
  • Institute of Functional Interface, KIT Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein- Leopoldschafen, Germany
Bibliografia
  • [1] S. Gohari, S. Sharifi, Z. Vrcelj, M.Y. Yahya, First-ply failure prediction of an unsymmetrical laminated ellipsoidal woven GFRP composite shell with incorporated surface-bounded sensors and internally pressurized, Compos. Part B: Eng. 77 (2015) 502–518.
  • [2] W. Beluch, T. Burczynski, Two-scale identification of composites' material constants by means of computational intelligence methods, Arch. Civ. Mech. Eng. 14 (4) (2014) 636–646.
  • [3] H.H. Tsang, S. Raza, Impact energy absorption of bio-inspired tubular sections with structural hierarchy, Compos. Struct. 195 (March) (2018) 199–210.
  • [4] R. Rafiee, M.A. Torabi, Stochastic prediction of burst pressure in composite pressure vessels, Compos. Struct. 185 (2018) 573–583.
  • [5] A. Vasanthanathan, P. Nagaraj, K.M. Kabilash, M. Sriram, The influence of stiffeners on axial crushing of glass-fabric-reinforced epoxy composite shells, J. King Saud. Univ. – Eng. Sci. 29 (1) (2017) 91–101.
  • [6] W. Zhang, et al., A non-orthogonal material model of woven composites in the preforming process, CIRP Ann. – Manuf. Technol. 66 (1) (2017) 257–260.
  • [7] R. Udhayaraman, S.S. Mulay, Multi-scale approach based constitutive modelling of plain woven textile composites, Mech. Mater. 112 (2017) 172–192.
  • [8] L. Wang, et al., Progressive failure analysis of 2D woven composites at the meso-micro scale, Compos. Struct. 178 (2017) 395–405.
  • [9] M. Dziendzikowski, K. Dragan, A. Katunin, Localizing impact damage of composite structures with modified RAPID algorithm and non-circular PZT arrays, Arch. Civ. Mech. Eng. 17 (1) (2017) 178–187.
  • [10] J. Chróscielewski, A. Sabik, B. Sobczyk, W. Witkowski, Nonlinear FEM 2D failure onset prediction of composite shells based on 6-parameter shell theory, Thin-Walled Struct. 105 (2016) 207–219.
  • [11] E. Shahabi, M.R. Forouzan, A damage mechanics based failure criterion for fiber reinforced polymers, Compos. Sci. Technol. 140 (2017) 23–29.
  • [12] W. Van Paepegem, J. Degrieck, Calculation of damage-dependent directional failure indices from the Tsai–Wu failure criterion, Compos. Sci. Technol. 63 (2) (2003) 305–310.
  • [13] B. Okutan, R. Karakuzu, Failure strength of woven glass fiber-epoxy composites pinned joints, J. Compos. Mater. 37 (15 (August)) (2003) 1337–1350.
  • [14] F.C.P. Joints, Failure Strength of Woven Glass 37 (15) (2003).
  • [15] L. Ye, H.R. Daghyani, Characteristics of woven fibre fabric reinforced composites in forming process, Compos. Part A: Appl. Sci. Manuf. 28 (9–10) (1997) 869–874.
  • [16] Y. Wang, X. Dai, K. Wei, X. Guo, Progressive failure behavior of composite flywheels stacked from annular plain profiling woven fabric for energy storage, Compos. Struct. 194 (December 2017) (2018) 377–387.
  • [17] D. Mackenzie, D. Camilleri, R. Hamilton, Design by analysis of ductile failure and buckling in torispherical pressure vessel heads, Thin-Walled Struct. 46 (2008) 963–974.
  • [18] J. Montesano, C.V. Singh, Predicting evolution of ply cracks in composite laminates subjected to biaxial loading, Compos. Part B: Eng. 75 (2015) 264–273.
  • [19] R. Al-Masri, H.A. Rasheed, Buckling solutions of clamped-pinned anisotropic laminated composite columns under axial compression using bifurcation approach and finite elements, Thin-Walled Struct. 123 (2018) 206–213.
  • [20] R.J. Vinson, Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials, Including Sandwich Construction, Solid Mechanics and its Applications, Springer, Netherlands, 2005.
  • [21] S. Mouloodi, S. Mohebbi, J. Khojasteh, M. Salehi, Size-dependent static characteristics of multicrystalline nanoplates by considering surface effects, Int. J. Mech. Sci. 79 (2014) 162–167.
  • [22] S. Mouloodi, J. Khojasteh, M. Salehi, S. Mohebbi, Size dependent free vibration analysis of multicrystalline nanoplates by considering surface effects as well as interface region, Int. J. Mech. Sci. 85 (2014) 160–167.
  • [23] A. Zingoni, N. Enoma, N. Govender, Equatorial bending of an elliptic toroidal shell, Thin-Walled Struct. 96 (2015) 286–294.
  • [24] S. Gohari, S. Sharifi, Z. Vrcelj, A novel explicit solution for twisting control of smart laminated cantilever composite plates/beams using inclined piezoelectric actuators, Compos. Struct. 161 (2016) 477–504.
  • [25] S. Gohari, S. Sharifi, Z. Vrcelj, New explicit solution for static shape control of smart laminated cantilever piezo-composite-hybrid plates/beams under thermo-electro- mechanical loads using piezoelectric actuators, Compos. Struct. 145 (2016) 89–112.
  • [26] H. Hu, W. Lin, F. Tu, Failure analysis of fiber-reinforced composite laminates subjected to biaxial loads, Composites Part B 83 (2015) 153–165.
  • [27] V. Xi, Stability analysis of multilayered composite shells with cut-outs, Arch. Civ. Mech. Eng. 11 (1) (2011) 195–207.
  • [28] S. Sharifi, et al., Fracture of laminated woven GFRP composite pressure vessels under combined low-velocity impact and internal pressure, Arch. Civ. Mech. Eng. 18 (4) (2018) 1715–1728.
  • [29] M.M. Alipour, An analytical approach for bending and stress analysis of cross/angle-ply laminated composite plates under arbitrary non-uniform loads and elastic foundations, Arch. Civ. Mech. Eng. 6 (2015).
  • [30] J. Marcinowski, Optimal orientation of reinforcing fibers in a shell made of fibrous composites, Arch. Civ. Mech. Eng. 6 (1) (2006) 19–29.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba67d5cc-3455-4d2e-b804-262f72eaa46d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.