Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fuzzy sets are the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling. Fuzzy sets have become popular in every branch of mathematics such as analysis, topology, algebra, applied mathematics etc. Thus fuzzy sets triggered the creation of a wide range of research topics in all areas of science in a short time. In this paper, we use the triangular fuzzy numbers for matrix domains of sequence spaces with infinite matrices. We construct the new space with triangular fuzzy numbers and investigate to structural, topological and algebraic properties of these spaces.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
75--89
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
- Department of Mathematical, Education Hasan Ali Yücel Education, Faculty Istanbul, University Vefa, 34470, Fatih, Istanbul, Turkey
Bibliografia
- [1] Altay B., Basar F., Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence spaces, J. Math. Anal. Appl., 336(1)(2007), 632-645.
- [2] Dutta A.J., Tripathy B.C., On the class of p-absolutely summable sequence li (p) of interval numbers, Songklanakarin Journal of Science and Technology, 38(2)(2016), 143-146.
- [3] Dutta A.J., Tripathy B.C., On fuzzy b − θ open sets in fuzzy topological space, Journal of Intelligent and Fuzzy Systems, 32(1)(2017), 137-139.
- [4] Goes G., Goes S., Sequences of bounded variation and sequences of Fourier coefficients I, Math. Z., 118(1970), 93-102.
- [5] Kirişci M., Integrated and differentiated sequence spaces, Journal Nonlinear Analysis and Application, 2015(1)(2015), 2-16. DOI:10.5899/2015/jnaa-00266.
- [6] Kirişci M., Riesz type integrated and differentiated sequence spaces, Bull. Math. Anal. Appl., 2(2015), 14-27.
- [7] Matloka M., Sequences of fuzzy numbers, BUSEFAL, 28(1986), 28-37.
- [8] Nanda S., On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33(1989), 123-126.
- [9] Şengönül M., On the Zweier sequence spaces of Fuzzy Numbers, International Journal of Mathematics and Mathematical Sciences, vol. 2014, Article ID 439169, 9 pages, (2014).
- [10] Şengönül M., The application domain of Cesaro matrix on some sequence spaces of fuzzy numbers, Int. J. Math. Anal., 9(2015), 1-14.
- [11] Subramanian N., Rao K.C., Gurumoorthy N., Integrated rate space ʃ lπ, Commun. Korean Math. Soc., 22(2007), 527-534.
- [12] Talo Ö., Başar F., On the space bvp(F) of sequences of p-bounded variation of fuzzy numbers, Acta Math. Sin. (Engl. Ser.), 24(7)(2008), 1205-1212.
- [13] Talo Ö., Başar F., Determination of the duals of classical sets of sequences of fuzzy numbers and related matrix transformations, Comp. Math. Appl., 58 (2009), 717-733.
- [14] Talo Ö., Başar F., Quasilinearity of the classical sets of sequences of fuzzy numbers and some related results, Taiwanese J. Math., 14(5)(2010), 1799-1819.
- [15] Talo Ö., Cakan C., On the Cesŕro convergence of sequences of fuzzy numbers, Appl. Math. Lett., 25(4) (2012), 676-681.
- [16] Tripathy B.C., Braha N.L., Dutta A.J., A new class of fuzzy sequences related to the lp space defined by Orlicz function, Journal of Intelligent and Fuzzy Systems, 26(3)(2014), 1273-1278.
- [17] Zadeh L.A., Fuzzy sets, Inf. Comp., 8(1965), 338-353.
- [18] Zararsız Z., Similarity measures of sequences of fuzzy numbers and fuzzy risk analysis, Advances in Math. Phys., vol. 2015, Article ID 724647, 12 pages, (2015).
- 19] Zararsız Z., A contribution to the algebraic structure of fuzzy numbers, Ann. Fuzzy Math. Inform., 12(2016), 205-219.
- [20] Zararsız Z., Şengönül M., On the gravity of center of sequence of fuzzy numbers, Ann. Fuzzy Math. Inform., 6(3)(2013), 479-485.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba678bf6-79ce-487b-843a-0c7b4fe905c0