PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling the Movement of Concentrate Particles in a Flash Furnace

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using the numerical modelling, the movement of the solid phase in the form of concentrate particles was analysed in the space of the reaction shaft and in the settler of the flash furnace. The calculations were carried out using a two-phase flow module. It was found that for all analysed concentrate particle sizes their share in the reaction shaft decreased over time. The particles moved in the form of one stream extending along the reaction shaft, accumulating on the side walls of the shaft and settler. Vortices were formed in the region of the settler tub containing particles to the upper spaces of the reaction shaft. The proportion of concentrate particles along the center of the reaction shaft after 60 s is 70 μm 1% - 3% for particles, 80 μm 0.1% - 0.7%, and for 100 μm 0,2m 0.2% - 0.7%. Along the side walls of the shaft, the shares of 70 μm particles varied between 40% and 9% over a shaft length of 5.5 m, and over 1.5 m from 12% to 10%. For 80 μm particles, the shares were 5% to 1%. The shares of 100 μm particles over a length of 1.5 m varied between 7% and 3%, and over a length of 5.5 m from 7% to 2%. Along the 70 μm reaction shaft, the concentrate particles moved the fastest at a speed of 8 m/s to 0.23 m/s. The 80 μm particles moved fastest in the range of 13 m/s to 3 m/s, and the 100 μm particles from 0.4 m/s to 2 m/s.
Rocznik
Strony
83--88
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr
Twórcy
autor
  • Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Poland
Bibliografia
  • [1] Piestrzyński, A. (1996). Monograph KGHM Polska Miedź. Lubin: Wyd. CBPM. (in Polish).
  • [2] Miczkowski, Z. & Czernecki, J. (2007). The influence of the size of the suspension furnace settling tank on the amount of dust discharged. Rudy Metale. 52(4), 172-175. UKD 66.042.8:669.046:519.6. (in Polish).
  • [3] Jylhä, P., Jokilaakso, A. (2019). CFD-DEM modelling of matte droplet behaviour in a flash smelting settler. In Copper International Conference, 18-21 August 2019 (pp. 1-14). Vancouver, Canada.
  • [4] Wypartowicz, J., Łędzki, A., Drożdż, P., Stachura, R. (2014) Non-Ferrous Metallurgy. Lecture 3. Retrieved June 3, 2014, from http://home.agh.edu.pl/~zmsz/pl/pliki/mmn/mmn_w03_miedz2. (in Polish).
  • [5] Jokilaakso, A., Taskinen, P. (2019). Towards a comprehensive model of the flash smelting furnace. In Copper International Conference,18-21 August2019 (pp. 1-12).Vancouver, Canada.
  • [6] Ma, Z., Turan, A., Guo, S. (2009). Practical numerical simulations of two-phase flow and heat transfer phenomena in a thermosyphon for design and development. In 9th International Conference Computational Science – ICCS, 25-27 May, (pp. 665-674). Baton Rouge, LA, USA.
  • [7] White, M., Haywood, D., Ranasinghe, D.J., Chen, S. (2015). The development and application of a model of copper flash smelting. In 11 International Conference on CFD in the Minerals and Process Industries, 7-8 December (pp. 1-7). Melbourne, Australia.
  • [8] Miettinen, E. (2017). From experimental studies to practical innovations in flash smelting. In International Proceeding Metallurgical Symposium (pp.175-186). Aalto, Finland.
  • [9] Zhu, Z., Zhou, P. Chem, Z. Wu, D. (2024) CFD–DEM modeling of particle segregation behavior in a simulated flash smelting furnace. Powder Technology 448, 120310, 1-14. DOI 10.1016/j.powtec.2024.120310.
  • [10] Peretti, J. & Jakirakkso A. (2023). CFD–DEM modeling of particle segregation behavior in a simulated flash smelting furnace. Heliyon. 9, e21570, 1-16. DOI 10.1016/j.helion.2023.e21570.
  • [11] Kumar, N., Desai, B., Tathavadkar, V., Patel, Y., Patel, J. & Singh, A. (2023). CFD modelling of copper flash smelting furnace – reaction shaft. Mineral Processing and Extractive Metallurgy. 132(1), 49-61. DOI: 10.1080/25726641.2022.2160081.
  • [12] Gao, D., Peng, X., Song, Y. & Dai, Y. (2021). Mathematical modelling and numerical optimization of particle heating process in copper flash furnace. Transactions of Nonferrous Metals Society of China. 31(5), 1506-1517. DOI: 10.1016/S1003-6326(21)65594-2.
  • [13] Jylha, J. & Jokilzzkso, A. (2023). Settling flow details in the flash smelting furnace -a CFD-DEM simulation study. Fluids. 8(10), 283, 1-14. DOI 10.3390fluids8100283.
  • [14] CHAM Expert of CFD software and consultancy. (2015). Retrieved 2015 from http://www.cham.co.uk/phoenics/d_polis/d_enc/enc_ipsa.htm.
  • [15] Xia, J., Ahokainen, T., Kankaanpaa, T., Jarvi, J. & Taskinen, P. (2007). Flow and heat transfer performance of slag and matte in the settler of a copper flash smelting furnace. Steel Research International. 78(2), 155-159. https://doi.org/10.1002/srin.200705873.
  • [16] Zhuo, J., Chen, Z., Zhou, P., Yu, J. & Liu, A. (2012). Numerical simulation of flow characteristics in settler of flash furnace. Transactions of Nonferrous Metals Society of China. 22(6), 1517-1525. DOI: 10.1016/S1003-6326(11)61350-2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba5e5fec-f8c6-4287-a661-4a0c5191e369
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.