PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Induced oxidation effects on physical and mechanical properties of lignite from Tempoku, Hokkaido, Japan for sustainable mining via subsurface cultivation and gasification method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The lignite resource has been under consideration for the subsurface cultivation and gasification (SCG) method to produce biomethane from lignite in Hokkaido, Japan. The primary phase of the method entails initiating the oxidative transformation of lignite using an H2O2 solution, resulting in the formation of dissolved organic carbon (DOC), a pivotal component. To examine the effects of induced oxidation on lignite's mechanical properties, artificial oxidation tests were conducted to form DOC. While there was a slight decrease in P-wave velocity and density, the uniaxial compression and indirect tensile strengths, as well as stiffness, did not decrease. These results were obtained at room temperature and atmospheric pressure. Therefore, further examination of the results under pore and confining pressures and at a higher temperature is necessary. However, it is expected that a significant strength decrease due to H2O2 oxidation would not need to be considered in the SCG method. This would lead to a reasonable design of the SCG site, saving time and costs. Moreover, DOC, strengths, and Young’s modulus showed positive correlations with P-wave velocity. Its measurement could be an effective tool for designing the site and predicting the performance of the SCG method.
Rocznik
Strony
240--250
Opis fizyczny
Bibliogr. 55 poz.
Twórcy
  • H-RISE, Northern Advancement Centre for Science & Technology, Hokkaido, Japan
  • H-RISE, Northern Advancement Centre for Science & Technology, Hokkaido, Japan
  • H-RISE, Northern Advancement Centre for Science & Technology, Hokkaido, Japan
autor
  • H-RISE, Northern Advancement Centre for Science & Technology, Hokkaido, Japan
  • H-RISE, Northern Advancement Centre for Science & Technology, Hokkaido, Japan
  • Faculty of Engineering, Hokkaido University, Japan
  • H-RISE, Northern Advancement Centre for Science & Technology, Hokkaido, Japan
Bibliografia
  • [1] Statham BA, World Energy Council. Deciding the future: energy policy scenarios to 2050. World Energy Council; 2007.
  • [2] Aramaki N, Tamamura S, Ueno A, Badrul AAKM, Murakami T, Tamazawa S, et al. Experimental investigation on the feasibility of industrial methane production in the subsurface environment via microbial activities in northern Hokkaido, Japan - a process involving subsurface cultivation and gasification. Energy Convers Manag 2017;153: 566-75.
  • [3] Miura K, Mae K, Okutsu H, Mizutani N. New oxidative degradation method for producing fatty acids in high yields and high selectivity from low-rank coals. Energy Fuel 1996; 10:1196-201. https://doi.org/10.1021/ef960051a.
  • [4] DoskoCil L, Grasset L, Valkova D, Pekar M. Hydrogen peroxide oxidation of humic acids and lignite. Fuel 2014;134: 406-13. https://doi.org/10.1016/J.FUEL.2014.06.011.
  • [5] Mae K, Shindo H, Miura K. A new two-step oxidative degradation method for producing valuable chemicals from low rank coals under mild conditions. Energy Fuel 2001;15: 611-7. https://doi.org/10.1021/ef000177e.
  • [6] Allard B, Derenne S. Oxidation of humic acids from an agricultural soil and a lignite deposit: analysis of lipophilic and hydrophilic products. Org Geochem 2007;38:2036-57. https://doi.org/10.1016/J.ORGGEOCHEM.2007.08.005.
  • [7] Tamamura S, Murakami T, Aramaki N, Ueno A, Badrul AA, Haq SR, et al. Reaction of lignite with dilute hydrogen peroxide to produce substrates for methanogens at in situ subsurface temperatures. Int J Coal Geol 2016;167:230-7. https://doi.org/10.1016/J.COAL.2016.10.003.
  • [8] Aramaki N, Tamamura S, Alam B, Kaneko K. Current challenges and future prospects of bio-methane production engineering in subsurface environment in northern Hokkaido: - proposal of subsurface cultivation and gasification. Journal of Mmij 2015;131:285-92.
  • [9] Haq SR, Tamamura S, Ueno A, Tamazawa S, Aramaki N, Murakami T, et al. Biogenic methane generation using solutions from column reactions of lignite with hydrogen peroxide. Int J Coal Geol 2018;197:66-73. https://doi.org/10.1016/J.COAL.2018.08.007.
  • [10] Huang B, Wang Y, Cao S. Cavability control by hydraulic fracturing for top coal caving in hard thick coal seams. Int J Rock Mech Min Sci 2015;74:45-57. https://doi.org/10.1016/J.IJRMMS.2014.10.011.
  • [11] Li Q, Xing H, Liu J, Liu X. A review on hydraulic fracturing of unconventional reservoir. Petroleum 2015;1:8-15. https:// doi.org/10.1016/J.PETLM.2015.03.008.
  • [12] Chen Z, Sun T. Evaluation method of coal-bed methane fracturing in the Qinshui basin. Math Probl Eng 2020;2020. https://doi.org/10.1155/2020/1545729.
  • [13] Cheng Y, Lu Z, Du X, Zhang X, Zeng M. A crack propagation control study of directional hydraulic fracturing based on hydraulic slotting and a nonuniform pore pressure field. Geofluids 2020;2020. https://doi.org/10.1155/2020/8814352.
  • [14] Schäfer T, Buckau G, Artinger R, Kim JI, Geyer S, Wolf M, et al. Origin and mobility of fulvic acids in the Gorleben aquifer system: implications from isotopic data and carbon/ sulfur XANES. Org Geochem 2005;36:567-82. https://doi.org/10.1016/J.ORGGEOCHEM.2004.10.011.
  • [15] Wassenaar L, Aravena R, Fritz P, Barker J. Isotopic composition (13C, 14C, 2H) and geochemistry of aquatic humic substances from groundwater. Org Geochem 1990;15: 383-96. https://doi.org/10.1016/0146-6380(90)90165-V.
  • [16] Artinger R, Buckau G, Geyer S, Fritz P, Wolf M, Kim JI. Characterization of groundwater humic substances: influence of sedimentary organic carbon. Appl Geochem 2000;15: 97-116. https://doi.org/10.1016/S0883-2927(99)00021-9.
  • [17] Aravena R, Wassenaar LI. Dissolved organic carbon and methane in a regional confined aquifer, southern Ontario, Canada: carbon isotope evidence for associated subsurface sources. Appl Geochem 1993;8:483-93. https://doi.org/10.1016/0883-2927(93)90077-T.
  • [18] Grøn C, Wassenaar L, Krog M. Origin and structures of groundwater humic substances from three Danish aquifers. Environ Int 1996;22:519-34. https://doi.org/10.1016/0160-4120(96)00056-6.
  • [19] Formolo M, Martini A, Petsch S. Biodegradation of sedimentary organic matter associated with coalbed methane in the Powder River and San Juan Basins, U.S.A. IntJ Coal Geol 2008;76:86-97. https://doi.org/10.1016/J.COAL.2008.03.005.
  • [20] Ahmed M, Smith JW. Biogenic methane generation in the degradation of eastern Australian Permian coals. Org Geo- chem 2001;32:809-16. https://doi.org/10.1016/S0146-6380(01)00033-X.
  • [21] Scott AR, Kaiser WR, Ayers WB. Thermogenic and Secondary Biogenic Gases, San Juan Basin, Colorado and New Mexico-Implications for Coalbed Gas Producibility. Am Assoc Petrol Geol Bull 1994;78:1186-209.
  • [22] Martini AM, Budai JM, Walter LM, Schoell M. Microbial generation of economic accumulations of methane within a shallow organic-rich shale. Nature 1996;383:155-8. https://doi.org/10.1038/383155a0.
  • [23] Strąpoć D, Mastalerz M, Dawson K, Macalady J, Callaghan AV, Wawrik B, et al. Biogeochemistry of Microbial Coal-Bed Methane. Annu Rev Earth Planet Sci 2011;39: 617-56. https://doi.org/10.1146/annurev-earth-040610-133343.
  • [24] Ozturk CA. AND Nasuf EANDKS. Estimation of rock strength from quantitative assessment of rock texture. J South Afr Inst Min Metall 2014;114:471-80.
  • [25] Howarth DF, Rowlands JC. Development of an index to quantify rock texture for qualitative assessment of intact rock properties. Geotech Test J 1986;9:169-79.
  • [26] Hecht CA, Bönsch C, Bauch E. Relations of rock structure and composition to petrophysical and geomechanical rock properties: Examples from permocarboniferous red-beds. Rock Mech Rock Eng 2005;38:197-216. https://doi.org/10.1007/s00603-005-0047-6.
  • [27] Ersoy A, Waller MD. Textural characterisation of rocks. Eng Geol 1995;39:123-36. https://doi.org/10.1016/0013-7952(95)00005-Z.
  • [28] Alber M, Kahraman S. Predicting the uniaxial compressive strength and elastic modulus of a fault breccia from texture coefficient. Rock Mech Rock Eng 2009;42:117-27. https://doi.org/10.1007/s00603-008-0167-x.
  • [29] Hugman IIIRHH, Friedman M. Effects of Texture and Composition on Mechanical Behavior of Experimentally Deformed Carbonate Rocks1. Am Assoc Petrol Geol Bull 1979;63:1478-89. https://doi.org/10.1306/2F9185C7-16CE-11D7-8645000102C1865D.
  • [30] Brattli B. The influence of geological factors on the mechanical properties of basic igneous rocks used as road surface aggregates. Eng Geol 1992;33:31-44. https://doi.org/10.1016/0013-7952(92)90033-U.
  • [31] Tugrul A, Zarif IH. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng Geol 1999;51:303-17. https://doi.org/10.1016/S0013-7952(98)00071-4.
  • [32] Tapponnier P, Brace WF. Development of stress-induced microcracks in Westerly Granite. Int J Rock Mech Min Sci Geomech Abstracts 1976;13:103-12. https://doi.org/10.1016/0148-9062(76)91937-9.
  • [33] Willard RJ, McWilliams JR. Microstructural techniques in the study of physical properties of rock. Int J Rock Mech Min Sci Geomech Abstracts 1969;6:1-12.
  • [34] Wong RHC, Chau KT, Wang P. Microcracking and grain size effect in Yuen Long marbles. Int J Rock Mech Min Sci Geomech Abstracts 1996;33:479-85. https://doi.org/10.1016/0148-9062(96)00007-1.
  • [35] Olsson WA. Grain size dependence of yield stress in marble. J Geophys Res 1974;79:4859-62. https://doi.org/10.1029/JB079i032p04859.
  • [36] Hareland G, Polston CE, White WE. Normalized rock failure envelope as a function of rock grain size. Int J Rock Mech Min Sci Geomech Abstracts 1993;30:715-7. https://doi.org/10.1016/0148-9062(93)90012-3.
  • [37] Onodera T, Kumara H. Relation between texture and mechanical properties of crystalline rocks. Bull Int Assoc Eng Geol 1980;22:173-7.
  • [38] Xu F, Yang C, Guo Y, Wang T, Wang L, Zhang P. Effect of confining pressure on the mechanical properties of thermally treated sandstone. 2017.
  • [39] Gueguen Y, Bouteca M, Bouteca M, Gueguen Y. Mechanical Properties of Rocks: Pore Pressure and Scale Effects; Mechanical Properties of Rocks: Pore Pressure and Scale Effects. Oil & Gas Science and Technology-Rev IFP 1999;54:703-14. https://doi.org/10.2516/ogst:1999060i.
  • [40] Liu S, Xu J. Mechanical properties of Qinling biotite granite after high temperature treatment. Int J Rock Mech Min Sci 2014;71:188-93. https://doi.org/10.1016/J.IJRMMS.2014.07.008.
  • [41] Liu S, Xu J. An experimental study on the physico-mechanical properties of two post-high-temperature rocks. Eng Geol 2015;185:63-70. https://doi.org/10.1016/J.ENGGEO.2014.11.013.
  • [42] Brotóns V, Tomas R, Ivorra S, Alarcon JC. Temperature influence on the physical and mechanical properties of a porous rock: San Julian’s calcarenite. Eng Geol 2013;167: 117-27. https://doi.org/10.1016/J.ENGGEO.2013.10.012.
  • [43] Tian H, Ziegler M, Kempka T. Physical and mechanical behavior of claystone exposed to temperatures up to 1000 °C. Int J Rock Mech Min Sci 2014;70:144-53. https://doi.org/10.1016/J.IJRMMS.2014.04.014.
  • [44] Alam AB, Fujii Y, Dipu NH, Sophea B, Rahim AB. Importance of Stress and Temperature-Dependent Permeability of Rocks and its Application in Underground Nuclear Waste Disposal. MIST International Journal of Science and Technology 2023;11:39-49. https://doi.org/10.47981/j.mijst.11(01)2023.413.
  • [45] Alam AKMB, Niioka M, Fujii Y, Fukuda D, ichi Kodama J. Effects of confining pressure on the permeability of three rock types under compression. Int J Rock Mech Min Sci 2014; 65:49-61. https://doi.org/10.1016/j.ijrmms.2013.11.006.
  • [46] Alam AKMB, Fujii Y, Fukuda D, Kodama J ichi, Kaneko K. Fractured Rock Permeability as a Function of Temperature and Confining Pressure. Pure Appl Geophys 2015;172: 2871-89. https://doi.org/10.1007/s00024-015-1073-2.
  • [47] Pan R, Ma Z, Yu M, Su C, Chao J. An Investigation on the Bursting Liability of Oxidized Coal and the Coupling Mechanism of Rock Burst and Spontaneous Combustion. Rock Mech Rock Eng 2022;55:317-40. https://doi.org/10.1007/s00603-021-02649-y.
  • [48] Larsen JW, Flowers RA, Hall PJ, Carlson G. Structural Rearrangement of Strained Coals. Energy Fuel 1997;11: 998-1002. https://doi.org/10.1021/ef970014z.
  • [49] Yagiz S. P-wave velocity test for assessment of geotechnical properties of some rock materials. Bull Mater Sci 2011;34: 947-53. https://doi.org/10.1007/s12034-011-0220-3.
  • [50] Khandelwal M. Correlating P-wave Velocity with the Physico-Mechanical Properties of Different Rocks. Pure Appl Geophys 2013;170:507-14. https://doi.org/10.1007/s00024-012-0556-7.
  • [51] Griffith Alan Arnold. The phenomena of rupture and flow in solids. Phil Trans Roy Soc Lond 1920;221:163-98.
  • [52] Arman H. Correlation of P-wave velocity with mechanical and physical properties of limestone with statistical analysis. Sci Rep 2021;11. https://doi.org/10.1038/s41598-021-03524-0.
  • [53] Rezaei M, Davoodi PK, Najmoddini I. Studying the correlation of rock properties with P-wave velocity index in dry and saturated conditions. J Appl Geophys 2019;169:49-57. https://doi.org/10.1016/j.jappgeo.2019.04.017.
  • [54] Leucci G, De Giorgi L. Experimental studies on the effects of fracture on the P and S wave velocity propagation in sedimentary rock (“Calcarenite del Salento”). Eng Geol 2006;84: 130-42. https://doi.org/10.1016/J.ENGGEO.2005.12.004.
  • [55] Kotyrba A, Kortas Ł. Geophysical imprint of mining-induced rock mass deformation in the area of construction disaster in Bytom (Poland). Journal of Sustainable Mining 2023;22: 169-84. https://doi.org/10.46873/2300-3960.1386.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba5b504a-bf08-47a6-b68e-61d1fe667ac8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.