PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the life cycle concrete with the addition of polypropylene fibers

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza cyklu życia betonu z dodatkiem odpadowym w postaci włókien polipropylenowych
Języki publikacji
EN
Abstrakty
EN
In accordance with the principles of sustainable construction, the results of Life Cycle Assessment (LCA) technique are useful inputs to the decision-making process when designing a building. This article presents such an analysis of a finished building product, which is a modified concrete mix. The calculations took into account the phases of the A1-A4 cycle, i.e. from the extraction of raw materials to the transport of the finished material to the construction site. Test results for concrete mixes and 28-day solid concrete are presented in tabular form. Based on all the test results obtained, it was found that the addition of waste polypropylene fibres has a positive effect on the key properties for the floor concrete. It has been found that proper processing of banding tapes or other polypropylene waste into macro-fibres can be a good example of proper waste management and can contribute to a significant reduction in residual waste. This additive is emission-free and sourced from recycling, making it an excellent alternative to commonly used dispersed reinforcement.
PL
Zgodnie z zasadami rozwoju zrównoważonego budownictwa przy projektowaniu obiektów budowlanych, użytecznymi danymi wejściowymi do podjęcia procesów decyzyjnych są wyniki analizy cyklu życia LCA. W artykule dokonano takiej analizy na gotowym wyrobie budowlanym, jakim jest zmodyfikowana mieszanka betonowa. W obliczeniach uwzględniono fazy cyklu A1-A4, czyli od wydobycia surowców do transportu gotowego materiału na plac budowy. W formie tabelarycznej przedstawiono wyniki badań dla mieszanki betonowej oraz dojrzałego betonu. Na podstawie wszystkich otrzymanych wyników badań stwierdzono, iż dodatek włókien polipropylenowych pochodzenia odpadowego pozytywnie wpływa na właściwości kluczowe dla betonu posadzkowego. Zauważono, iż odpowiednie przerobienie taśm bandujących lub innych odpadów polipropylenowych na makrowłókna może stanowić doskonały przykład prawidłowej gospodarki odpadami i przyczynić się do znacznego ograniczenia zalegających śmieci, dodatek ten jest nieemisyjny, pochodzący z recyklingu i może stanowić doskonałą alternatywę dla powszechnie używanego zbrojenia rozproszonego.
Rocznik
Strony
23--42
Opis fizyczny
Bibliogr. 60 poz., il., tab.
Twórcy
  • Military University of Technology, Faculty of Civil Engineering and Geodesy, Warsaw, Poland
Bibliografia
  • [1] “Green Deal: New proposals to make sustainable products the norm and boost Europe’s resource independence”, European Commission. [Online]. Available: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_2013.
  • [2] “Commodity Concrete Market, Statistics”, SPBT. [Online]. Available: https://spbt.pl/.
  • [3] M. Małek, et al., “Influence of polypropylene, glass and steel fiber on the thermal properties of concrete”, Materials, vol. 14, no. 8, art. no. 1888, 2021, doi: 10.3390/ma14081888.
  • [4] M.B. Ali, R. Saidur, and M.S. Hossain, “A review on emission analysis in cement industries”, Renewable and Sustainable Energy Reviews, vol. 15, no. 5, pp. 2252-2261, 2011, doi: 10.1016/j.rser.2011.02.014.
  • [5] R. Maddalena, J.J. Roberts, and A. Hamilton, “Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements”, Journal of Cleaner Production, vol. 186, pp. 933-942, 2018, doi: 10.1016/j.jclepro.2018.02.138.
  • [6] M. Schneider, M. Romer, M. Tschudin, and H. Bolio, “Sustainable cement production – present and future”, Cement and Concrete Research, vol. 41, no. 7, pp. 642-650, 2011, doi: 10.1016/j.cemconres.2011.03.019.
  • [7] F. Sorrentino, “Chemistry and engineering of the production process: state of the art”, Cement and Concrete Research, vol. 41, no. 7, pp. 616-623, 2011, doi: 10.1016/j.cemconres.2011.03.013.
  • [8] A.K. Chatterjee, “Chemistry and engineering of the clinkerization process – Incremental advances and lack of breakthroughs”, Cement and Concrete Research, vol. 41, no. 7, pp. 624-641, 2011, doi: 10.1016/j.cemconres.2011.03.020.
  • [9] H. Mikulcic, et al., “Reducing greenhouse gasses emissions by fostering the deployment of alternative raw materials and energy sources in the cleaner cement manufacturing process”, Journal of Cleaner Production, vol. 136, pp. 119-132, 2016, doi: 10.1016/j.jclepro.2016.04.145.
  • [10] M. Bouasria, et al., “Partial substitution of cement by the association of Ferronickel slags and Crepidula fornicata shells”, Journal of Building Engineering, vol. 33, art. no. 101587, 2021, doi: 10.1016/j.jobe.2020.101587.
  • [11] R.A. Berenguer, et al., “Sugar cane bagasse ash as a partial substitute of Portland cement: Effect on mechanical properties and emission of carbon dioxide”, Journal of Environmental Chemical Engineering, vol. 8, no. 2, art. no. 103655, 2020, doi: 10.1016/j.jece.2020.103655.
  • [12] W.D. Pratiwi, et al., “Combination of precipitated-calcium carbonate substitution and dilute-alkalifly ash treatment in a very high-volume fly ash cement paste”, Construction and Building Materials, vol. 234, art. no. 117273, 2020, doi: 10.1016/j.conbuildmat.2019.117273.
  • [13] H.Du and S.D. Pang, “High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute”, Construction and Building Materials, vol. 264, art. no. 120152, 2020, doi: 10.1016/j.conbuildmat.2020.120152.
  • [14] H. Wu, et al., “An efficient and economic denitration technology based on fuel pretreatment for cement cleaner production”, Journal of Cleaner Production, vol. 272, art. no. 122669, 2020, doi: 10.1016/j.jclepro.2020.122669.
  • [15] M.U. Hossain, et al., “Techno-environmental feasibility of wood waste derived fuel for cement production”, Journal of Cleaner Production, vol. 230, pp. 663-671, 2019, doi: 10.1016/j.jclepro.2019.05.132.
  • [16] M. Huang, et al., “Evaluation of oil sludge as an alternative fuel in the production of Portland cement clinker”, Construction and Building Materials, vol. 152, pp. 226-231, 2017, doi: 10.1016/j.conbuildmat.2017.06.157.
  • [17] A.C. (Thanos) Bourtsalas, et al., “Use of non-recycled plastics and paper as alternative fuel in cement production”, Journal of Cleaner Production, vol. 181, pp. 8-16, 2018, doi: 10.1016/j.jclepro.2018.01.214.
  • [18] P. Murray, et al., “Optimal transformation strategies for buildings, neighbourhoods and districts to reach CO2 emission reduction targets”, Energy and Buildings, vol. 207, art. no. 109569, 2020, doi: 10.1016/j.enbuild.2019.109569.
  • [19] P. Pylsy, et al., “Buildings’ energy efficiency measures effect on CO2 emissions in combined heating, cooling and electricity production”, Renewable and Sustainable Energy Reviews, vol. 134, art. no. 110299, 2020, doi: 10.1016/j.rser.2020.110299.
  • [20] D. Schwede and M. Sheng, “Assessment of the annual energy demand for cooling of buildings in their urban context in 26 cities in China”, Procedia Engineering, vol. 198, pp. 305-312, 2017, doi: 10.1016/j.proeng.2017.07.087.
  • [21] A. Al-Saggaf, et al., “Towards sustainable building design: the impact of architectural design features on cooling energy consumption and cost in Saudi Arabia”, Procedia Manufacturing, vol. 44, pp. 140-147, 2020, doi: 10.1016/j.promfg.2020.02.215.
  • [22] N. Zhou, et al., “Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050”, Nature Energy, vol. 3, pp. 978-984, 2018, doi: 10.1038/s41560-018-0253-6.
  • [23] N.F. Medina, et al., “Mechanical and thermal properties of concrete incorporating rubber and fibres from tyre recycling”, Construction and Building Materials, vol. 144, pp. 563-573, 2017, doi: 10.1016/j.conbuildmat.2017.03.196.
  • [24] M.H. Niaki, et al., “Experimental study on the mechanical and thermal properties of basalt fiber and nanoclay reinforced polymer concrete”, Composite Structures, vol. 191, pp. 231-238, 2018, doi: 10.1016/j.compstruct.2018.02.063.
  • [25] M. Małek, et al., “Characteristics of recycled polypropylene fibers as an addition to concrete fabrication based on Portland cement”, Materials, vol. 13, no. 8, art. no. 1827, 2020, doi: 10.3390/ma13081827.
  • [26] ISO 14040:2006/1:2020 Environmental management – Life cycle assessment – Principles and framework – Amendment 1.
  • [27] EN 15804:2012 Sustainability of construction works – Environmental product declarations.
  • [28] EN 15643-1:2010 Sustainability of construction works – Sustainability assessment of buildings – Part 1: General framework .
  • [29] EN 13813:2002 Screed material and floor screeds – Screed material – Properties and requirements.
  • [30] “Floor concrete”, PROSEL technology. [Online]. Available: http://www.prosel.pl/pl/6,36-betony_posadzkowe.
  • [31] EN 206:2013 Concrete – Specification, performance, production, and conformity.
  • [32] H. Dondelewski and M. Januszewski, Betony cementowe. Warszawa: Wydawnictwo Naukowo – Techniczne, 2008.
  • [33] PN-EN 9342 Admixtures for concrete grout and mortar.
  • [34] EN 197-1:2012 Cement – Part 1: Composition, Specifications, and Conformity Criteria for Common Cements. European Committee for Standardization, 2012.
  • [35] EN 196-6:2019-01 Methods of Testing Cement – Part 6: Determination of Fineness. European Committee for Standardization, 2019.
  • [36] EN 196-1:2016-07 Methods of Testing Cement – Part 1: Determination of Strength. European Committee for Standardization, 2016.
  • [37] A.M. Neville, Properties of concrete. England, Essex: Trans-Atlantic Publications, 2011.
  • [38] ISO 14067:2018 Greenhouse gases – Carbon footprint of products – Requirements and guidelines for quantification.
  • [39] Concrete Embodied Carbon Footprint Calculator. [Online]. Available: https://circularecology.com/ concrete-embodied-carbon-footprint-calculator.html.
  • [40] L. Runkiewicz and T. Błaszczyński, Ekologia w budownictwie. Wrocław: Dolnośląskie Wydawnictwo Edukacyjne, 2014.
  • [41] EN 12390-3:2019 Testing hardened concrete – Part 3: Compressive strength of test specimens.
  • [42] EN 12390-5:2019 Testing hardened concrete – Part 5: Flexural strength of test specimens.
  • [43] EN 12390-6:2009 Testing hardened concrete – Part 6: Tensile splitting strength of test specimens.
  • [44] EN 12350-2:2019 Testing fresh concrete – Part 2: Slump test.
  • [45] EN 12350-7:2019 Testing fresh concrete – Part 7: Air content – Pressure methods.
  • [46] S. Acosta-Calderon, et al., “Comparative evaluation of sisal and polypropylene fiber reinforced concrete properties”, Fibers, vol. 10, no. 4, 2022, doi: 10.3390/fib10040031.
  • [47] N. Sohaib, et al., “Using polypropylene fibers in concrete to achieve maximum strength”, in Eighth International Conference on Advances in Civil and Structural Engineering – CSE 2018. New York, USA: Institute of Research Engineers and Doctors, 2018.
  • [48] K. Ramujee, “Strength properties of polypropylene fiber reinforced concrete”, International Journal of Innovative Science, Engineering and Technology, vol. 2, pp. 3409-3413, 2013.
  • [49] M.P. Iniya and K. Nirmalkumar, “A review on fiber reinforced concrete using sisal fiber”, IOP Conference Series: Materials Science and Engineering, vol. 1055, art. no. 012027, 2021 doi: 10.1088/1757-899X/1055/1/012027.
  • [50] M.K. Darshan, et al., “Strength and analysis of sisal fibre in concrete”, International Research Journal of Engineering and Technology, vol. 7, pp. 2581-2589, 2020.
  • [51] B.K. Vinaykumar, et al., “Study on the strength of sisal fiber reinforced concrete”, International Journal of Innovative Science, Engineering and Technology, vol. 8, pp. 5383-5389, 2019.
  • [52] V. Badino, et al., “LCA approach to the automotive glass recycling”, Journal of Environmental Sciences, vol. 9, pp. 208-214, 1997.
  • [53] L. Chun-Fa, et al., “Life cycle perspective and life cycle assessment for recycled glass”, in Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing. Shanghai, China, 21-25 September 2007. IEEE, 2007, pp. 5041-5044; doi: 10.1109/wicom.2007.1235.
  • [54] G. Guignone, et al., “Life cycle assessment of waste glass powder incorporation on concrete: a bridge retrofit study case”, Applied Sciences, vol.Podziekowania 12, no. 7, art. no. 3353, 2022, doi: 10.3390/app12073353.
  • [55] Z. Ahmad, et. al., “Life cycle assessment (LCA) of polypropylene fibers (PPF) on mechanical, durability, and microstructural efficiency of concrete incorporating electronic waste aggregates”, Case Studies in Construction Materials, vol. 18, art. no. e01979, 2023, doi: 10.1016/j.cscm.2023.e01979.
  • [56] S. Yin, et al., “A life cycle assessment of recycled polypropylene fibre in concrete footpaths”, Journal of Cleaner Production, vol. 112, part 4, pp. 2231-2242, 2016, doi: 10.1016/j.jclepro.2015.09.073.
  • [57] Yi-Ming Tai, “Effects of product lifecycle management systems on new product development performance”, Journal of Engineering and Technology Management, vol. 46, pp. 67-83, 2017, doi: 10.1016/j.jengtecman.2017.06.001.
  • [58] M. Fąfara, Ł. Łukaszewski, E. Owczarek, and I. Źrebiec, “Life Cycle Assessment (LCA) and environmental comparison the selected construction methods of residential buildings in traditional and straw cubes technology – a case study”, Archives of Civil Engineering, vol. 68, no. 3, pp. 241-255, 2022, doi: 10.24425/ace.2022.141883.
  • [59] T. Rudnicki and R. Jurczak, “The impact of the addition of diabase dusts on the properties of cement pavement concrete”, Archives of Civil Engineering, vol. 68, no. 1, pp. 395-411, 2022, doi: 10.24425/ace.2022.140175.
  • [60] B. Langier, et al., “Strength and durability characteristics of concretes with crushed side window glass as partial aggregate substitution”, Archives of Civil Engineering, vol. 69, no. 2, pp. 5-21, 2023, doi: 10.24425/ace.2023.145249.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba56fb1a-579f-4417-9aac-132effb17798
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.