PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wear characterization of HNT filled glass-epoxy composites using Taguchi’s design of experiments and study of wear morphology

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Glass-epoxy composites are increasingly being used in several industrial applications, viz. automobile, marine, aerospace, electrical and electronics components, especially in tribological components, viz. bearings, impellers, cams, driving wheels, bolts, nuts, seals, bushes and gears, which are used extensively in machinery because their lower weight, exceptional strength, resistance to corrosion capabilities, and cost effectiveness. The work focuses on optimization of the process parameters of the dry sliding wear test, viz. the applied load, disc rotation speed, weight percentage (wt.%) of the Halloysite nanotube (HNT) filler, time as well as the track diameter to minimize the wear rate of the glass fabric reinforced epoxy composite against EN-32 steel. In this research, the specimens are fabricated in accordance with the ASTM G-99 standard and the experiment is carried out with various combinations of parameters using a pin-on-disc tribometer, while keeping the time and track diameter constant. To proceed further, trial runs are conducted using MINITAB 19 software to optimize the process parameters for minimum wear by developing Taguchi’s design of experiments (DOE) based on the L45 orthogonal array (OA), and subse-quent analysis of the signal-to-noise (S/N) ratio. The results of the optimization clearly indicate that the wt.% of HNT is the most significant parameter that has a significant effect on minimizing the applied load, speed and sliding wear rate. In over-view, the experiment results showed that the combined parameters influenced the wear. In addition, scanning electron microscopy (SEM) is performed to study the surface morphologies of the worn specimens and determine the wear mechanism in accordance with the test results. The wear mechanism clearly indicates that there is a larger amount of matrix debris, fiber breakage and fiber-matrix debonding in the neat composites as compared to the HNT filled glass-epoxy composites since a distinct pattern of micro coring and segregation of the filler along the peripheries of the glass fiber-epoxy interstitial sites, leading to strong bonding between the fibers and matrix are observed in the HNT filled composites. The strong bonding thus resists the wear to a certain extent, and the wear debris is relatively less in the HNT filled composites as compared to the neat composites.
Rocznik
Strony
85--91
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Department of Mechanical and Automobile Engineering, CHRIST (Deemed to be University), Bangalore-560074, Karnataka, India
autor
  • Department of Mechanical Engineering, ATME College of Engineering, Mysore-570028, Karnataka, India
autor
  • Department of Mechanical Engineering, VTU-Centre for post-graduation studies, Mysore-570029, Karnataka, India
autor
  • Department of Mechanical and Automobile Engineering, CHRIST (Deemed to be University), Bangalore-560074, Karnataka, India
Bibliografia
  • [1] Jang B.Z., Advanced Polymer Composites: Principles and Applications, ASM International, Boca Raton 1994.
  • [2] Harris B., Engineering Composite Materials, 2nd ed., Institute of Materials, London 1999.
  • [3] Mallick P.K., Fiber Reinforced Composite Materials, Manufacturing and Design, 3rd ed., CRC Press, Boca Raton 2007.
  • [4] Xanthos M., Functional Fillers for Plastics, Wiley-VCH GmbH & Co. KGaA, Weinheim 2010.
  • [5] Rashmi, Renukappa N.M., Suresha B., Devarajaiah R.M., Shivakumar K.N., Dry sliding wear behaviour of organo-modified montmorillonite filled epoxy nanocomposites using Taguchi’s techniques, Materials & Design 2011, 32,(8-9), 4528-4536, DOI: 10.1016/j.matdes.2011.03.028.
  • [6] Naveed Anjum S.L., Prasad A., Suresha B., Role of silicondioxide filler on mechanical and dry sliding wear behaviour of glass-epoxy composites, Advances in Tribology 2013, 3, 2, 1-10, DOI: 10.1155/2013/324952.
  • [7] Annappa A.R., Basavarajappa S., Studies on dry sliding wear behaviour of functionally graded graphite particle-filled glass-epoxy composites, Composite Interfaces 2014, 21, 5, 395-414, DOI: 10.1080/15685543.2014.870866.
  • [8] Senthil Kumar M.S., Mohanasundararaju N., Sampath P.S., Vivek U., Tribological analysis of nano clay/epoxy/glass fiber by using Taguchi’s technique, Materials & Design 2015, 70, 1-9, DOI: 10.1016/j.matdes.2014.12.033.
  • [9] Agrawal S., Singh K.K., Sarkar P.K., A comparative study of wear and friction characteristics of glass fiber reinforced epoxy resin, sliding under dry, oil-lubricated and inert gas environments, Tribology International 2016, 96, 217-224, DOI: 10.1016/j.triboint.2015.12.033.
  • [10] Sridhar R., Narasimha Murthy H.N., Pattar N., Vishnu Mahesh K.R., Krishna M., Parametric study of twin screw extrusion for dispersing MMT in vinylester using orthogonal array technique and grey relational analysis, Composites Part B: Engineering 2012, 43, 2, 599-608, DOI: 10.1016/j.compositesb.2011.08.025.
  • [11] Biswas S., Satapathy A., Tribo-performance analysis of red mud filled glass-epoxy composites using Taguchi experimental design, Materials & Design 2009, 30, 8, 2841-2853, DOI: 10.1016/j.matdes.2009.01.018.
  • [12] Ravichandran G., Rathnakar G., Santhosh N., Thejaraju R., Antiwear performance evaluation of halloysite nanotube (HNT) filled polymer nanocomposites, International Journal of Engineering and Advanced Technology 2019, 9, 1, 3314-3321, DOI: 10.35940/ijeat.A1469.109119.
  • [13] Du M.L., Guo B.C., Jia D.M., Newly emerging applications of halloysite nanotubes: a review, Polymer International 2010, 59, 5, 574-582, DOI: 10.1002/pi.2754.
  • [14] Ayesha Kausar, Review on polymer/halloysite nanotube nanocomposite, Polymer-Plastics Technology and Engineering 2017, 57, 5, 548-564, DOI: 10.1080/03602559.2017.1329436.
  • [15] Zhi-Lin Cheng, Lu Ma, Zan Liu, A study on synergistic reinforcing effect of halloysite nanotubes/diatomite mixture-filled polymer (PP and PA6) composites, Plastics, Rubber and Composites 2018, 47, 6, 249-257, DOI: 10.1080/14658011.2018.1471252.
  • [16] Ravichandran G., Rathnakar G., Santhosh N., Effect of heat treated HNT on physico-mechanical properties of epoxy nanocomposites, Composites Communications 2019, 13, 4, 42-46, DOI: 10.1016/j.coco.2019.02.005.
  • [17] Friedrich K., Polymer composites for tribological applications, Advanced Industrial and Engineering Polymer Research 2018, 1, 1, 3-39, DOI: 10.1016/j.aiepr.2018.05.001.
  • [18] Sahin Y., Optimization of testing parameters on the wear behaviour of metal matrix composites based on the Taguchi method, Materials Science and Engineering: A 2005, 408,1-2, 1-8, DOI: 10.1016/j.msea.2004.11.012.
  • [19] Upadhyaya P., Roy S., Haque M.H., Lu H., Influence of nano-clay compounding on thermo-oxidative stability and mechanical properties of a thermoset polymer system, Composites Science and Technology 2013, 84, 8-14, DOI: 10.1016/j.compscitech.2013.04.006.
  • [20] Hufenbach W.A., Stelmakh A., Kunze K., Böhm R., Kupfer R., Tribo-mechanical properties of glass fibre reinforced polypropylene composites, Tribology International 2012, 49, 8-16, DOI: 10.1016/j.triboint.2011.12.010.
  • [21] Ravichandran G., Rathnakar G., Santhosh N., Chennakeshava R., Mosharib Ahmad Hashmi, Enhancement of mechanical properties of epoxy/halloysite nanotube (HNT) nanocomposites, SN Applied Sciences 2019, 1, 296-303. https://link.springer.com/article/10.1007%2Fs42452-019-0323-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba563705-3b4c-4e40-be56-d96f0814cddb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.