PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combined cooling, heat and power (Trigeneration) at Offenburg University of Applied Sciences

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The energy supply of Offenburg University of Applied Sciences (HS OG) was changed from separate generation to trigeneration in 2007/2008. Trigeneration was installed for supplying heat, cooling and electrical power at HS OG. In this paper, trigeneration process and its modes of operation along with the layout of the energy facility at HS OG were described. Special emphasis was given to the operation schemes and control strategies of the operation modes: winter mode, transition mode and summer mode. The components used in the energy facility were also outlined. Monitoring and data analysis of the energy system was carried out after the commissioning of trigeneration in the period from 2008 to 2011. Thus, valuable performance data was obtained.
Rocznik
Strony
25--37
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Offenburg University of Applied Sciences, Badstrasse 24, 77652 Offenburg, Germany; Phone 0049 7812054610
  • Offenburg University of Applied Sciences, Offenburg, Germany
Bibliografia
  • Abuiyada, G.S.S. 2009. Verification of design and system operation modes by elaborating a detailed technical description of the energy plant of Hochschule Offenburg. Master Sc. Thesis. 97 p. Offenburg University of Applied Sciences, Germany.
  • Angrisani, G., A. Rosato, C. Roselli, M. Sasso, C. Sibilio. 2012. Experimental results of a micro-trigeneration installation. Applied Thermal Engineering 38: 78-90.
  • Cervone, A., D.Z. Romito, E. Santini. 2011. Technical and economic analysis of a Micro-Tri/Cogeneration system with reference to the primary power source in a shopping center. International Conference on Clean Electrical Power. IEEE Conference Publications: 439-445.
  • Carvalho, M., M.A. Loranzo, L.M. Serra, V. Wohlgemuth. 2012. Modeling simple trigeneration systems for the distribution of environmental loads. Environmental Modeling and Software 30: 71-80.
  • Chicco, G., P. Mancarella. 2006. From cogeneration to trigeneration: profitable alternatives in a competitive market. IEEE Transactions on Energy Conversion 1: 265-272.
  • Chicco, G., P. Mancarella. 2007. Trigeneration primary energy saving evaluation for energy planning and policy development. Energy Policy 35: 6132-6144.
  • Compernolle, T., N. Witters, S. Van Passel, T. Thewys. 2011. Analyzing a self-managed CHP system for greenhouse cultivation as a pro table way to reduce CO2-emissions. Energy 36: 1940-1947.
  • DIN. 2003. Heating systems in buildings - method for calculation of the design heat load. DIN 12831. German Institute for Standardization (DIN): 1-73.
  • Easaw, R., P. Muley. 2010a. Micro-Trigeneration: the best way for decentralized power, cooling and heating. Innovative Technologies for an Efficient and Reliable Electricity Supply (CITRES). IEEE Conference Publications: 459-466.
  • Easaw, R., P. Muley. 2010b. Comparative study of energy performance for two mCCHP systems used in domestic residence. International Symposium on Electrical and Electronics Engineering. IEEE Conference Publications: 321-326.
  • Gopisetty, S., P. Treffinger. 2013. Energy analysis of Trigeneration based on scarce data. 10th International Conference on the European Energy Market (EEM). Stockholm, Sweden: IEEE, Inc.: 1-7.
  • Herold, K.E., R. Radermacher, S.A. Klein. 1996. Absorption Chillers and Heat Pumps. 350 p. CRC Press, Inc.
  • Kavvadias, K.C., A.P. Tosios, Z.B. Maroulis. 2010. Design of a combined, heating, cooling and power system: sizing, operation strategy selection and parametric analysis. Energy Conversion and Management 51: 833-845.
  • Kerr, T. 2008. Combined Heat and Power: Evaluating the Benefits of Greater Global Investment. 34 p. International Energy Agency Publications. Paris, France.
  • König, W. 2006. Funktionsbeschreibung der Regelung und Steuerung: Fachhochschule Offenburg Sanierung Heizung/Kälte, Lüftung, Regelung. 122 p. Ing.-Büro Wolgang König.
  • Rocha, M.S., R. Andreos, J.R. Simőes-Moreira. 2012. Performance tests of two small trigeneration pilot plants. Applied Thermal Engineering 41: 84-91.
  • Santo, D.B.E. 2012. Energy and energy efficiency of a building internal combustion engine trigeneration system under two different operational strategies. Energy and Buildings 53: 28-38.
  • VDI. 1996. Cooling load calculation of air-conditioned rooms. VDI 2078. 159 p. Association of German Engineers.
  • VDI. 2005. Energy systems - combined heat and power - Terms, definitions, examples. VDI 4608, Part 1. 19 p. Association of German Engineers.
  • Zhou, Z., P. Liu, Z. Li, W. Ni. 2012. An engineering approach to the optimal design of distributed energy systems in China. Applied Thermal Engineering 53: 387-396.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba5628c0-86f0-40bf-9f6c-af0d3c7103fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.