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Abstract: The paper presents the NaviExpert’s Community
Traffic technology, an interactive, community–based car navigation
system. Using data collected from its users, Community Traffic
offers services unattainable to earlier systems. On the one hand,
the current traffic data are used to recommend the best routes in
the navigation phase, during which many potentially unpredictable
traffic-delaying and traffic-jamming events, like unexpected road-
works, road accidents, or diversions, can be taken into account and
thereby successfully avoided. On the other hand, a number of dis-
tinctive features, like immediate location of various traffic dangers,
are offered. Using exclusively real-life data, provided by NaviEx-
pert, the paper presents two illustrative case studies concerned with
experimental evaluation of solutions to computational problems re-
lated to the community-based services offered by the system.
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1. Introduction

The NaviExpert’s Community Traffic (NX-CT), a crucial part of the NaviEx-
pert Navigation System, is a technology especially designed to interact with its
users. NX-CT, representing the next, more advanced generation of rapidly de-
veloping satellite-based car navigation systems, collects an assortment of data
concerning the current traffic situation, which are stored, processed and finally
used to recommend the best routes during the navigation phase. This means
that potentially unpredictable traffic-delaying and traffic-jamming events, re-
sulting from unexpectedly started roadworks, road accidents, closed roads or
diversions, can be taken into account and thereby successfully avoided. In order
to operate efficiently, the system processes massive amounts of data, which can
be generally categorized into:
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• implicit data (generated automatically by the mobile application),
• explicit data (generated purposefully by the community users).

Each kind of data needs specialized procedures. For example, information gen-
erated by the users may be, for various reasons, untrue (e.g. because of being
outdated). The analysis in this case involves verifying the reliability of the in-
formation sources (i.e. the reliability of those who submitted the information).
Its computational challenges are illustrated in the first batch of experiments
described in this paper.

At the same time, the bulk of information received by the system is used for
navigational purposes, in particular for finding the fastest routes. This also calls
for specialized procedures, in particular for a good travel time prediction model.
The model must be fairly stable on the one hand, but flexible enough to react
to the dynamically changing traffic situation on the other. Its computational
challenges are illustrated in the second batch of experiments described in the
paper.

This paper describes selected services offered by the NX-CT system and pro-
vides experimental illustration of the two key aspects. Following some related
works described in Section 2, Section 3 presents the different generations of car
navigating systems, describing their intrinsic characteristics, and introduces the
NX-CT system. Sections 4 and 5 introduce two exemplary computational prob-
lems (message reliability estimation and travel time estimation, respectively)
related to the community-based services offered by the system. The two sec-
tions include also two case studies concerned with experimental evaluation of
those problems. The paper is concluded in the final section.

2. Some related works

A considerable amount of novelty in modern transportation system design has
come from applying real–time position data collected from GPS devices installed
on moving vehicles. Such dynamic approaches differ from the traditional model,
in which decisions were based on statistical data collected in the past. While de-
cision support systems built on statistics and rules form the basis for artificial
intelligence, incorporating dynamic data describing current state of environ-
ment is a step towards ambient intelligence systems (e.g. Ramos et al., 2008).
In this light a crucial part of modern logistic systems relies on data quality
provided either anonymously (and thus automatically) or in personalized form
(and thus consciously) by human operated vehicles. One intensive application
area for those systems is vehicle routing. Dynamic vehicle routing problem has
been discussed in numerous recent research papers and several applications have
been proposed. Thus, for instance, Mukai et al. (2005) present a strategy for
proactive route planning based on expected rewards, in which the learning ar-
chitecture is designed to enable transport vehicles foresee the next destination.
Giaglis et al. (2004) propose a generic architecture for mobile real-time systems
for urban distribution, while Zografos et al. (2002) developed system to address
incident response logistics.
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Another intensive application area for those systems is vehicle navigation,
which is also the subject of this paper. It must be noted that, apart from
numerous research papers and research projects in this area, several commercial
navigation solutions are already available.

For example, the systems Yanosik (yanosik.pl) and Coyote (www.moncoyote.
com) offer services that include collecting user messages and utilizing these
messages in danger identification procedures, while TomTom HD Traffic (www.
tomtom.com/en_gb/services/live/hd-traffic) and Garmin 3D Traffic Live
(www.garmin.com/traffic) offer services that include estimating travel times
and utilizing these times in route finding procedures. Another example is the
system Waze (www.waze.com), which heavily relies on the community of its users
and tries to deal with both of the addressed data processing aspects. Unfor-
tunately, comparisons of those commercial systems with the presented NX-CT
system are quite difficult, as there are practically no publications on the work-
ing details of those systems, at least as far as their computational aspects are
concerned.

Problems posed and solved in such systems (including NX-CT), i.e. verifying
the reliability of the information sources and, first of all, predicting the travel
times, were described and discussed in numerous papers, including papers on
different approaches to assessing data source credibility, like Hilligoss and Rieh
(2008), Kubiak (2007), Nunez et al. (2012), or Tseng and Fogg (1999), and
papers on different approaches to learning prediction models from floating car
data, like Billings and Yang (2006), Liu et al.(2006), Rice and van Zwet (2004),
Lint et al. (2005), Wan and Kornhauser (2010), or Zhu et al. (2010).

However, community and social network based systems are being increas-
ingly wider conceived and constructed. The objectives of these systems system-
atically become more general, and the use of travel related social contribution
feed is no longer limited to routing or navigating. Basing on multiple-user GPS
trajectories, Zheng et al. (2009) experimentally mine interesting locations and
classical travel sequences in a given geo-spatial region; basing on GPS travel
data, Wolf et al.(2001) try to derive the actual trip purposes; finally, basing on
reports on popular travel destinations, Caschera et al.(2009) reconstruct tem-
poral evolution of tourist targets.

3. The NaviExpert community traffic system

This section describes car navigation systems in general and the NX-CT system
in particular. After outlining some earlier generations of car navigation systems,
it presents the main navigating features of NX-CT. And because the idea of
the system is being interactive, it enumerates the ways in which the users can
interact with NX-CT. Finally, the distinctive, community-based services of the
system are briefly discussed.
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3.1. Generations of car navigation systems

All car navigation systems could be roughly categorized as follows:
First generation: systems capable of finding a route from A to Z through

B, C, . . . , with a ‘route’ meaning in this context a route of minimal length.
For example: find a route from Poznań to Copenhagen through Berlin. The
fundamental advantage of such systems is in finding the way and navigating
in unfamiliar environment. If the map data used by the system are updated
on a regular basis, then the system will find routes that avoid some long-term
traffic hindrances, like roadworks, closed roads, etc. The first disadvantage of
such systems is that users have no control over the type of roads with which
the route is created. The users who want to drive over better roads may only
influence this by specifying manually a number of additional ‘through’ points,
thus forcing particular connections, and modifying the final result. Another,
fundamental disadvantage is that the system cannot find fastest routes, as the
travel time basically depends on some static roadwork parameters, like type of
road, but also on the dynamically changing traffic situation, including short-
term traffic hindrances (especially in urban areas). Therefore, the systems are
best suited for long-distance routes.

Second generation: systems capable of finding a route from A to Z through
B, C, ... that satisfies some pre-defined constraints regarding selected static
parameters of the road network. A ‘route’ still means a route of minimal length,
although owing to the imposed constraints, it may be not the shortest possible
one. For example: find a route from Poznań to Kraków by motorways (wherever
possible). Systems of this kind extend their functionality to finding shortest
routes of at least given quality (if available). This gives the users better control
over the connection, as types of roads selected for the route influence both travel
time and travel comfort (travelling along roads of better quality may shorten
the average travel time and help maintaining the driver’s confidence). The
remaining disadvantage is the system’s inability to find fastest routes and to
react to the current traffic situation, including short-term hindrances, etc. The
systems are suitable for long-distance and medium-distance routes.

Third generation: systems capable of finding both shortest and fastest routes
from A to Z through B, C, ... additionally satisfying pre–defined constraints
regarding static parameters of the road network. The shortest ‘route’ means the
one of minimal length, while the fastest ‘route’ means the one of minimal travel
time, although combined routes can also be successfully defined and found. For
example: find the fastest route from Poznań coach station (located close to the
city centre) to Poznań airport (located a few kilometres west of the city) about
noon. In finding fastest routes these systems can use dynamically collected
traffic data, e.g. floating car data, to find connections of greater average speed,
avoiding regularly congested areas and usual traffic jams. The final disadvantage
is that the system is incapable of reacting to short-term traffic hindrances and
obstructions, including sudden jams or detours caused by road accidents. The
systems are generally suitable for all-distance routes (long, medium and short),
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including traffic-troubled, congested urban areas.
Fourth generation: interactive systems, capable of reacting to long-term as

well as short-term traffic situations when finding both shortest and fastest routes
from A to Z through B, C, ... that additionally satisfy pre-defined constraints
regarding static parameters of the road network. Again, shortest, fastest as
well as combined routes can be found. The systems are fully operable for all-
distance routes (long, medium and short) and for all-area environments. The
development of such systems is directed towards building community networks
of their users. Owing to the interactive manner of their operation, the systems
are fully dynamic, and thereby capable of avoiding unpredictable traffic-delaying
and traffic-jamming events, resulting from unexpectedly started roadworks, road
accidents, closed roads or detours.

3.2. Next generation car navigation in NX-CT

Previous systems essentially lacked the fully dynamic functionality, because they
possessed no direct information on unpredictable traffic events. Admittedly,
they were able to react to many of these situations, but – owing to their mode
of operation – their reaction could only come after a considerable delay. This
is because the dynamic information that these systems collect and utilize con-
sists of the floating car data, that is time-stamped geographical positions of the
GPS devices (and thus the vehicles that carry them). These raw positions are
converted to passages through road segments of the underlying road network,
which, under proper assumptions, permits the system to draw more or less ac-
curate conclusions regarding the general fluency of the traffic on particular road
segments. The most immediate deductions regard the actual average speeds of
the passages: if the average speed of all passages observed at a given time on a
given segment decreases considerably, then this probably signifies a traffic jam
there. The ultimate conclusion is then that passing this segment in immedi-
ate future will also follow that decreased (or at least not significantly different)
speed. In result, it is advisable to avoid the particular segment when planning
fast routes in favour of other segments, which may make the route longer, but
ultimately faster.

The floating car data, i.e. time-stamped geographical positions of the GPS
devices, constitute implicit data supplied to the system. However, there ex-
ist also an non-implicit source of data that can assist the system, especially in
searching for fastest routes. The main difficulty that faces the fastest route plan-
ning systems of previous generations is the lack of observational data. Consider
a road segment for which no passages have been observed for some recent time.
This may be due to chance (no user of the system drove just there), with the
traffic being fluent, so redirecting cars through this segment makes good sense.
Unfortunately, observing no passages through a given segment may also imply
that owing to some unpredictable traffic situation (e.g. a serious road accident)
the segment had been entirely closed for traffic. In this case, redirecting cars
through this segment makes no sense.
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An interesting solution to this problem is achieved by inviting the system’s
users to participate in the process of generating the necessary data. Because NX-
CT is a mobile phone-based system, run as a mobile phone-based application, its
users have direct possibility of engaging into active interaction with the system.
First of all, by generating and submitting an appropriate message, the user can
notify the system (and thereby its whole user community) about a specific traffic
situation, like new detours being just assembled or old ones disassembled, new
road segments being just opened or old ones being just closed, etc.

The notification data, i.e. messages and alerts submitted by the community,
constitute explicit data supplied to the system. The notification data may found
diverse, more or less direct, applications. A direct application is in current route
finding. A less direct application may involve creating maps, plans or other
depictions, that can be used by all users of the community in various studies,
reports and accounts.

It should be also finally stressed that all the community users, apart from
providing various forms of information (implicit and explicit) to the system,
obtain explicit information from the system. This information permits the users
to find fastest routes, especially in response to rapidly changing traffic situation
and thereby to travel more safely and more comfortably.

3.3. Ways of interacting with NX-CT

The users can interact with the system by submitting messages, which they can
do at any time – first of all, from their cars, but also from outside the cars. To
this end, they have a number of interfaces at their disposal, which include the
mobile application, a web-based internet portal, a web-based internet forum, the
e-mail, and the phone. All these interfaces have their intrinsic characteristics,
for example the internet forum gives the user the immediate opportunity to
discuss an issue with other users interested in the subject.

The submitted messages can generally be categorized into confirming and
cancelling messages. A great deal of various situations can be reported, including
traffic-specific: closing/opening of road segments, commencement/completion
of roadworks, changes/updates to road infrastructure and to road signs, er-
rors/omissions in road maps, as well as many other situations, including: road
dangers, road checks, speed cameras.

For various reasons, the different pieces of information submitted by the
users may be untrue (for example because they are no longer up-to-date). This
is why the systems attempts to verify the received messages. Verifying such kind
of information is, in general, a complex problem. The idea actually utilized here
is that of verifying the reliability of the information sources (i.e. of those users
who submitted the particular pieces of information).
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3.4. Distinctive services of NX-CT

In addition to route finding and navigating, the NX-CT system offers its users
numerous other services. Apart from quite typical, map-oriented functionality,
like calculating parameters of various routes (including routes found by the
system) or displaying various map layers (including the points of interest layer),
the system provides the following, specialized services:

• characterizing and visualizing the current traffic state of selected areas in
real time,

• finding approximate geographical position for devices without the GPS
functionality (so called ‘cell ID’ identification).

Especially interesting services of the system arise from cooperation with other
communities. This includes utilizing evaluations of some pre-defined objects
(e.g. points of interest) supplied by users of those communities. For example,
the system may recommend:

• restaurants, evaluated by the users of gastronauci.pl,
• natural/architectural monuments, evaluated by the users of wikipedia.pl.

Finally, the system’s community can also influence many very system-specific
issues. Among others, these may include suggestions concerning:

• preferences on recommended routes (i.e. routes that should be offered as
first to users),

• road categorization (i.e. the quality classes to which all roads are conven-
tionally assigned),

• navigating messages (i.e. the messages voiced by the system in the navi-
gating phase),

• points of interest (i.e. the locations that may turn out to be really worth
visiting).

4. Estimating the reliability of messages

This section illustrates various analyses of the explicit warning reports against
road dangers, speed cameras, or road checks, submitted to the system by the
community users. Unfortunately, such submissions are often quite scattered
as far as their location is concerned, because different users move at different
speeds in different directions and, additionally, they generate their messages
with different delays. In result, locations of warnings that concern the same
event may vary considerably. To be useful, however, these reports should be
not only true but also as accurate as possible, at least as far as the locations
reported in them are concerned. Their analysis is therefore twofold. Firstly, the
reports are clustered to discover distinct events and, secondly, their reliability
is verified. Below, we illustrate the second phase of the analyses.

4.1. Modified voting

The simplest idea of computing the reliability of a warning against an event
involves computing the ratio of positive reports (i.e. messages that confirm the
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existence of the event) to all reports, the procedure referred to as ‘voting’. Let
n be the number of all reports in a group of reports and pos the number of
positive reports in the same group. Then the voting reliability of a warning is
equal to pos

n
.

This voting approach may be slightly modified in order to reduce the reli-
ability of warnings characterized with only few reports: one may notice that
when there is only one positive report in a group, then the generated warning
would receive reliability of 100%. Therefore, the modified voting reliability is
computed as pos

n
× n+1

n+2 .

4.2. Expectation maximization

Another idea involves building a specialized probability model for the given
data generation scenario. All the variables involved in the scenario are binary:
a report is either positive or negative, a warning either exists or not. Thus, a
probabilistic model is not difficult to establish (see Kubiak, 2007).

Let ne and nu be the number of events and users, respectively. Each user
ui, i = 1, . . . , nu, may send a report concerning an event ej , j = 1, . . . , ne. Let
us further assume that we have a set D of such reports represented by binary
variables rij , stating whether a user ui confirmed or did not confirm the event
ej . The probability of the observed data can be then expressed by:

p(D)=
∏

(i,j)∈D

(

p(ui)
[

p(ej)
rij (1−p(ej))

1−rij
]

+(1−p(ui))
[

(1−p(ej))
rijp(ej)

1−rij
])

,

where p(ej) is probability of a positive event ej (i.e., the reliability of a warning)
and p(ui) is probability that a user ui sends a reliable report (i.e, the reliability
of the user). Although these parameters are initially unknown, their values may
be estimated using the submitted reports. The problem can be formulated and
solved by maximizing the likelihood of observed data, p(D), which is the core
of the Expectation Maximization algorithm (see Dempster et al., 1977).

4.3. Experimental study

The two methods of reliability estimation were compared on a set of user reports
generated during a nine-month period of 2007 in the area surrounding the city
of Poznań. Only reports related to speed cameras were used; 954 reports were
available in this setting.

The modified voting and the EM algorithm both use a reliability threshold
to filter unreliable warnings. The values of the threshold were varied from 0 to
1 with step of 0.2.

A reference set of warnings (the so-called ground-truth) was available in
this experiment, as precise information on the existence of speed cameras in
the 43 places mentioned in users’ reports was acquired. In 29 cases the speed
cameras did exist (reliability equal to 100%), while in 14 cases they did not exist
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Table 1. Reliability estimation results of the two methods

Threshold Voting EM
#warnings MSE #warnings MSE

0.0 34 0.120 35 0.094
0.2 34 0.120 31 0.080
0.4 32 0.118 22 0.022
0.6 29 0.109 20 0.000
0.8 16 0.013 19 0.000
1.0 00 0.000 17 0.000

(reliability equal to 0%). One may notice, however, that the reference set is not
a proper random sample of potential speed camera positions.

To measure the quality of the approaches we use the number of warnings
reported by the methods and the mean square error (MSE) of the reliability
of the reported warnings with respect to the ground-truth. We only consider
warnings that matched the ground truth (this is an optimistic estimate, as we
do not count warnings not related to any of the considered 43 potential places).

The results of the experiment are shown in Table 1. Its contents reveals that
the EM algorithm significantly outperforms the voting method for all thresh-
olds. It is also worth noting that, starting from the threshold equal to 0.6, the
EM algorithm generates 20 ground-truth warnings with perfect precision: MSE
series approaches 0. A similar case for the voting algorithm starts from 0.8,
but then the number of matched warnings starts to fall and its drop in MSE is
mainly due to that fall.

5. Estimating the travel time

This section illustrates the analysis of data for finding fastest routes, which can
be effectively found only when the system has access to accurate estimates of
travel times for each road segment. In other words, the goal is to predict the
vehicle travel time between two given points on a road network, which, in order
to reduce its computational complexity, is cast to that of estimating the travel
time on single road segments. The analysis is entirely based on the implicit
data, in the form of time-stamped GPS positions, sent automatically from the
users of the traffic network.

5.1. The prediction model

More formally, the goal of the problem can be stated as prediction of unknown
value of vehicle travel time yst on a particular road segment s ∈ {1, . . . , S} in
a given time point t. The task is then to find a function f(s, t) that estimates,
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in the best possible way, the value of yst. The accuracy of a single prediction
ŷst = f(s, t) is measured by a loss function L(yst, ŷst), which determines the
penalty for predicting ŷst when the true value is yst. A reasonable loss function
in this case is the squared error loss:

L(yst, ŷst) = (yst − ŷst)
2.

Ideally, we would like to get a model f(s, t) that minimizes the expected risk:

f(s, t)∗ = argmin
f

R(f) = argmin
f

E(s,t)Ey|(s,t)

[

(y − f(s, t))2
]

.

Since this is directly impossible, as the distribution of y given (s, t) is hardly
ever known, we rely on a set of training samples, {(yi, si, ti)}Ni=1, and construct
a model that, instead, minimizes the empirical risk:

Remp(f) =
1

N

N
∑

i=1

L(y(i), f(s(i), t(i))),

possibly with a kind of regularization over the function f to prevent overfitting
of the model (see Hastie et al., 2003).

We additionally assume that for each road segment s and time point t,
a vector xst = (xst1, xst2, . . . , xstn) of attributes, which describe the segment
and the time point, is known. Without the loss of generality, we assume that
attribute values are real numbers, i.e. x ∈ Rn.

5.2. The static and dynamic components

The whole procedure comprises two models. The first model, the static one, is
responsible for predicting overall trends in the traffic. It assumes that the traffic
undergoes periodic changes, but is otherwise static. The model is developed on
the basis of a set of past observations, discovering (potentially existing in the
data) repeatable traffic flow patterns (e.g. “at every Sunday morning, on a road
segment in the city center, the traffic is low”). This constitutes its strength (the
stability of predictions, ensured by large data samples and the ability to predict
for the long-term, e.g. with a horizon of a few days), but also its weakness
(the inability to react to dynamically changing, non-periodic traffic conditions).
This poor reactivity is also the reason for introducing the second model, the
dynamic one, which exploits the most recent, real-time observations with the
aim to improve the short-term predictions of the static model.

5.2.1. The static component

Construction of the static model is similar to the typical regression task. To
deliver the right prediction, the model uses attributes that describe a given
segment at a given time point. The training data are represented in a tabular
form {(yi,xi)}

N
i=1. In this study we use rather simple static models that exploit

only a limited number of features describing a road segment and a time point.
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However, the models described here behave fairly satisfactorily and for the sake
of readability we limit our discussion to them.

The simplest method for predicting the travel time y relies on estimating
a single value from all observations. Such a value corresponds to the average
unit travel time for the considered road network and the time interval. More
precisely, we compute the average inverse velocity (the average travel time for
a length unit) over all historical observations:

v̄−1 =

∑N

i=1 y
(i)

∑N

i=1 x
(i)
l

,

where xl is the length of the l-th segment. The prediction for a given road
segment is then given by:

ŷgm = fs(x) = xl × v̄−1.

This form of the prediction is reasonable, as the average inverse velocity is the
solution to the optimization problem:

v̄−1 = argmin
a

N
∑

i=1

x
(i)
l

(

y(i)

x
(i)
l

− a

)2

,

where the length of the segment is multiplied by the loss for single observations.
In other words, if we minimize the weighted squared loss on a training set, the
average inverse velocity is the best possible choice for the estimated single value.
We refer to this model as the global mean.

The second method, referred to as the segment mean, averages the travel
time on each road segment separately. Although more specific than the global
mean, it is still primitive enough to ignore the time point of the passage:

ŷsm = fs(x) =

∑

i:x
(i)
id

=xid

y(i)

∑

i:x
(i)
id

=xid

1
.

The third model, referred to as the segment/time period mean, additionally con-
siders information about the time point of the passage. Using expert knowledge
on traffic trends, we define five time periods and separately compute the segment
mean for each roach segment in each time period.

5.2.2. The dynamic component and the higher level combination

The goal of the dynamic model is to use the most recent observations to improve
the predictions of the static model fs(xst) in the short-term. The dynamic model
is introduced to account for those changes in traffic that cannot be explained
by exploiting long-term and periodic behaviour.

The dynamic model fd is structured hierarchically, with a static and a dy-
namic component at its lower level. The dynamic component is constructed as
a time series model for each road segment. Prediction ŷst0 for a given segment s
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and time point t0 is computed using previous observations yst, t < t0, from
segment s. Training data are represented in form (yst1 , yst2 , . . . , ystNs

), for each
segment s ∈ {1, . . . S}, where Ns is the number of observations for s. In this
paper we use a simple moving average over all past observations from a given
time interval t:

fma(s, t) = ŷst0 =

∑

t0−ti<t ysti
∑

t0−ti<t 1
.

At the higher level the model takes as input the prediction from the static model
fs(xst), the prediction from the moving average model fma(s, t), and produces
the final travel time estimate as a linear combination of the segment length and
the two previous predictions:

fd(s, t) = a0xl + a1fs(xst) + a2fma(s, t).

This model is thus a kind of a cascade, in which the static prediction is combined
with the dynamic moving average. The model is trained by linear regression
every 5 minutes on the most recent observations from time window of a few
past hours. The coefficient a0 controls the change of the average travel time per
unit length, the coefficient a1 is responsible for the proportional adjustment of
the static model to the current traffic, while the coefficient a2 determines the
reliability of the prediction computed from the most recent observations.

5.3. Experimental study

In our experiments we use real-life floating car data provided by NaviExpert.
All the data were collected from a pre-defined geographical area in a pre-defined
time range. The area of observation ranges from 16.94190◦ N to 16.95980◦ N
and from 52.39294◦ E to 52.41417◦ E, covering nearly 3 square kilometres in
the city of Poznań. The area contains two important roundabouts: Rondo
Śródka and Rondo Rataje, with Jana Pawła II Street between them, as well
as two important bridges: Most Bolesława Chrobrego and Most Św. Rocha.
This particular area was chosen because in 2011, on 26th of September, it was
affected by a specific incident that we study in greater detail in the experiment.

The time range of the observations spans four weeks in 2011: since 12th
Sept till 10th Oct, with the exception of the night hours (from midnight until
5 a.m.).

In total, we use four methods for travel time estimation: the global mean
(GM), the segment mean (SM), the segment/time period mean (STPM), and
the dynamic model (DM). For computing linear regression we use the Weka
package (see Hall et al., 2009).

To build the dynamic model we take the most recent observations from
a time window of exactly one hour.
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Table 2. Prediction results of the four models

model MAE[min] MAE[%] RMSE[min] RMSE[%]

Global Mean 0.3307 119.80 0.8556 108.00
Segment Mean 0.2761 100.00 0.7922 100.00
Seg./Time Period Mean 0.2649 95.97 0.7776 98.15
Dynamic model 0.2556 92.60 0.6415 80.98

5.3.1. General performance

The first experiment evaluates the general performance of the models. To this
end, we split the data into learning and testing parts: the learning set extends
between 12th and 25th September, while the test set extends between 26th
September and 10th Oct. The static models are built using only the learning
set, while the dynamic model additionally uses the most recent observations
from the test set (but each prediction is entirely based on earlier observations).
The performance of all models is presented in Table 2. We report both mean
absolute error (MAE) and root mean squared error (RMSE), with the result of
the segment mean as the reference for computing the relative errors.

As it can be observed, SM and STPM improve significantly over GM, al-
though it is DM that achieves the best results, particularly in terms of RMSE.
This is due to the adaptive nature of this model.

5.3.2. Specific performance

The second experiment concerns a specific traffic situation. It focuses on an
accident that occurred on 26th September, 2011 in the selected area. The local
press reported∗ that day to be generally affected by traffic jams in the whole city,
but specifically in the selected area: a lorry broke down in the Jana Pawła II
Street and was removed only about 9 p.m., resulting in unusual congestion
lasting until late evening hours. The accident coincided with the beginning of
a new academic year, which additionally increased the traffic.

Actual tests concern the performance of the models on two separate days,
19th and 26th of September. The former was chosen to precede the latter by
exactly one week, to be used for reference and comparison with the fairly unusual
26th September. For each of them a learning set spanning a week before the
chosen day is extracted and the static models are constructed using these data
sets.

Fig. 1 shows the RMSE for the static time period model and the dynamic
model throughout the two compared days. On 19th September the prediction
errors of the static and the dynamic models are similar and fairly low, as no

∗http://poznan.gazeta.pl/poznan/1,36037,10359810,Poznan_sparalizowany__Wina_

jednego_tira_.html (“Poznań jammed, one lorry to blame”), in Polish.
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Figure 1. Prediction error for models by the time of day, for two different days:
boxes SM 26th Sept., diamonds DM 26th Sept., triangles SM 19th Sept.,
circles DM 19th Sept.
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Figure 2. Regression coefficient a1 of the dynamic model by the time of day, for
two different days: circles 26th Sept., boxes 19th Sept.
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major incident happened on that day, and the traffic conditions were typical,
producing quite accurate predictions of the static model and a slight, but con-
sistent improvement the dynamic model over the static one.
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On the other hand, the prediction error of both models rises significantly in
the afternoon of 26th September. As far as this error is concerned, the dynamic
model outperforms the static model, as is able to adapt to the unexpected
accident. According to the local press, the broken lorry was removed about
9 p.m., which is visible in the figure, as the prediction error starts to fall down
around this hour. The predictions of the dynamic model are a bit worse after
9 p.m., which may be caused by the (decreasing but existent) bias of the previous
events that were still present in the one-hour time window of the model.

The behaviour of the dynamic model is reflected by the values of the a1 co-
efficient, which adapts the static model to the current traffic situation. Values
greater than 1 suggest the presence of unusual traffic jams, while values lower
than or equal to 1 suggest usual traffic flow. As it can be seen in Fig. 2, the
afternoon values of a1 differ significantly between the two days under consider-
ation. On 19th September, a1 slightly oscillates around the default value of 1,
suggesting that the dynamic traffic conditions match the static, historical pat-
tern. On 26th September, a1 starts rising in the afternoon, approaching 5 at
about 8 p.m., which reflects the extreme and unusual increase of the travel time
in the area, lasting well into the evening hours. After 9 p.m., as the incident has
been dealt with, the values of a1 fall rapidly, suggesting return of the normal
traffic conditions.

6. Conclusions

The paper describes the range of services offered by the NaviExpert’s Commu-
nity Traffic system, a next generation interactive technology that uses various
kinds of user-supplied data for finding and recommending best routes during the
navigation phase. The development of such systems is directed towards building
community networks of their users. Interacting actively with the system, the
community can provide data of enormous usability. Their most obvious applica-
tion is in current route finding, which in result becomes much more reactive to
unpredictable traffic-delaying and traffic-jamming events. Another, exclusively
community-oriented, application is in shaping the system services, the quality of
which may be positively influenced by the community’s feedback. Still another
application, arising from cooperation with other communities, includes utilizing
evaluations of pre-defined objects (e.g. points of interest) supplied by users of
those communities.

In two small case studies the paper illustrates an experimental evaluation
of two important aspects of the complex data processing carried out by the
system: the reliability of information submitted by the community, and the
flexibility of the travel time prediction. In each case, two different types of
methods were tested: a basically simple, but computationally little demanding
method (simple voting in reliability estimation and simple averaging in travel
time estimation) and a more advanced, but computationally more demanding
method (expectation maximization in reliability estimation and dynamic model
in travel time estimation). In both cases the more advanced methods signifi-
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cantly outperformed the simple ones,
achieving results that make these methods useful enough to be used in prac-

tical applications, despite their increased computational demands.
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