PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Entropy generation and thermodynamic analysis of solar air heaters with artificial roughness on absorber plate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents mathematical modelling and numerical analysis to evaluate entropy generation analysis (EGA) by considering pressure drop and second law efficiency based on thermodynamics for forced convection heat transfer in rectangular duct of a solar air heater with wire as artificial roughness in the form of arc shape geometry on the absorber plate. The investigation includes evaluations of entropy generation, entropy generation number, Bejan number and irreversibilities of roughened as well as smooth absorber plate solar air heaters to compare the relative performances. Furthermore, effects of various roughness parameters and operating parameters on entropy generation have also been investigated. Entropy generation and irreversibilities (exergy destroyed) has its minimum value at relative roughness height of 0.0422 and relative angle of attack of 0.33, which leads to the maximum exergetic efficiency. Entropy generation and exergy based analyses can be adopted for the evaluation of the overall performance of solar air heaters.
Rocznik
Strony
23--48
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wz.
Twórcy
autor
  • Department of Mechanical Engineering, National Institute of Technology, Jamshedpur, Jharkhand, India, Pin - 831014
autor
  • Department of Mechanical Engineering, National Institute of Technology, Jamshedpur, Jharkhand, India, Pin - 831014
Bibliografia
  • [1] DUFFIE J.A., BECKMAN W.A.: Solar Engineering of Thermal Processes, 2nd Edn., John Wiley, New York 1991.
  • [2] SUKHATME S.P., NAYAK J.P.: Solar Energy. 3rd Edn., Tata McGraw Hill, New Delhi 2011.
  • [3] PRASAD R.K.: Thermal Performance Characteristics of Unidirectional Flow Porous Bed Solar Energy Collectors for Heating Air. Ph.D. thesis, Indian Institute of Technology, Roorkee 1991.
  • [4] PRASAD R.K, SAINI J.S.: Packed-bed solar air heater with unidirectional flow arrangement. In: Proc. Nat. Sem. on Energy Conversion in Buildings, The Institute of Engineers, I.I.T., Roorkee 1992, 29-33.
  • [5] SAHU M.K., PRASAD R.K.: Exergy based performance evaluation of solar air heater with arc shaped wire roughened absorber plate. Renew. Energ. 96(2016), 233-243.
  • [6] BEJAN A.: Advanced Engineering Thermodynamics. Wiley Interscience, 1988.
  • [7] BEJAN A.: Entropy Generation Minimization. CRC Press, New York 1996.
  • [8] BEJAN A.: A study of entropy generation in fundamental convective heat transfer. J. Heat Transfer 101(1979), 4, 718-725.
  • [9] SAHIN A.Z.: Irreversibilities in various duct geometries with constant wall heat flux and laminar flow. Energ. 23(1998), 6, 465-473.
  • [10] A.Z. SAHIN: The effect of variable viscosity on the entropy generation and pumping power in a laminar fluid flow through a duct subjected to constant heat flux. Heat Mass Transfer 35(1999), 6, 499-506.
  • [11] OZTOP H.F., SAHIN A.Z., DAGTEKIN I.: Entropy generation through hexagonal cross-sectional duct for constant wall temperature in laminar flow. Int. J. Energy Res. 28(2004), 8, 725-737.
  • [12] DAGTEKIN I., OZTOP H.F., SAHIN A.Z.: An analysis of entropy generation through a circular duct with different shaped longitudinal fins for laminar flow. Int. J. Heat Mass Tran. 48(2005), 1, 171-181.
  • [13] KO T.H., TING K.: Entropy generation and optimal analysis for laminar forced convection in curved rectangular ducts: A numerical study. Int. J. Therm. Sci. 45(2006), 2, 138-150.
  • [14] HAYDAR KUCUK: Numerical analysis of entropy generation in concentric curved annular ducts. J. Mech. Sci. Technol. 24(2010), 9, 1927-1937.
  • [15] MINA S., MAHMOUDI A.H., RAOUF A.H.: Entropy generation due to natural convection cooling of a nanofluid. Int. Commun. Heat Mass 38(2011), 7, 972-983.
  • [16] OMID M., KIANIFAR A., SAHIN A.Z., SOMCHAI W.: Entropy generation during Al2O3/water nanofluid flow in a solar collector: Effects of tube roughness, nanoparticle size, and different thermophysical models. Int. J. Heat Mass Tran. 78(2014), 64-75.
  • [17] VELMURUGANA P., KALAIVANANA R.: Energy and exergy analysis of multi pass flat plate solar air heater - An analytical approach. Int. J. Green Energy 12(2015), 8, 810-820.
  • [18] LAYEK A., SAINI J.S., SOLANKI S.C.: Second law optimization of a solar air heater having chamfered rib–groove roughness on absorber plate. Renew. Energ. 32(2007), 12, 1967-1980.
  • [19] NAPHON P.: On the performance and entropy generation of the double-pass solar air heater with longitudinal fins. Renew. Energ. 30(2005), 9, 1345-1357.
  • [20] BEHURA A.K., PRASAD B.N., PRASAD L.: Heat transfer, friction factor and thermal performance of three sides artificially roughened solar air heaters. Solar Energy 130(2016), 46-59.
  • [21] KUMAR A., SAINI R.P., SAINI J.S.: Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having multi v-shaped with gap rib as artificial roughness. Renew. Energ. 58(2013), 151-163.
  • [22] SCIACOVELLI A., VERDA V., SCIUBBA E.: Entropy generation analysis as a design tool - a review. Renew. Sustain. Energy Rev. 43(2015), 1167-1181.
  • [23] ROSEN M.A.: Second law analysis, approaches and implications. Int. J. Energy Res. 23(1991), 5, 415-429.
  • [24] BEJAN A., KEARNEY D.W., KREITH F.: Second law analysis and synthesis of solar collector systems. J. Sol. Energ-T ASME 103(1981), 1, 23-28.
  • [25] INCROPERA F.P., DEWITT D.P.: Fundamentals of heat and mass transfer. 5th Edn., John Wiley & Sons, New York 2006.
  • [26] SAINI S., SAINI R.P.: Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness. Sol. Energy 82(2008), 12, 1118-1130.
  • [27] MALHOTRA A., GARG H.P., PALIT A.: Heat loss calculation of flat plate solar collectors. J. Therm. Energ. 2(1981), 2, 59-62.
  • [28] RYBIŃSKI W., MIKIELEWICZ J.: Analytical solutions of heat transfer for laminar flow in rectangular channels. Arch. Thermodyn. 35(2014), 4, 29-42.
  • [29] ZIMA W., DZIEWA P.: Mathematical modelling of heat transfer in liquid flat-plate solar collector tubes. Arch. Thermodyn. 31(2010), 2, 45-62.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba53104e-37a7-464f-9f54-f0694eb7dab7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.