PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rheology of the wet surfactant foams and biofoams - a review

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Właściwości reologiczne pian ciekłych wytwarzanych na baize syntetycznych surfaktantów oraz biosurfaktantów - przegląd
Języki publikacji
EN
Abstrakty
EN
The rheology of foams is a difficult subject due to the complexity of their structure and the nature of their components. It’s influenced by multiple factors including: liquid bulk properties, gas properties, air phase volume, liquid volume fraction, solution viscosity, interfacial thin film visco-elasticity, bubble size distribution, and bubble shape. A nature of the adsorbed surfactants or biosurfactants and state of adsorption layer also modified the properties of the thin liquid film. The physical measurements of foam rheological properties are also complicated by its inherently unstable nature. Therefore, this review is focused on rheological studies and comparisons between various surfactant based foams and biofoams having wellcharacterized and different properties.
PL
Reologia układów pianowych jest skomplikowanym zagadnieniem badawczym ze względu na ich złożoną strukturę. Wpływają na nią wielorakie czynniki, takie jak: właściwości fazy ciekłej i gazowej, objętości fazy gazowej i ciekłej, lepkość roztworu, lepkoelastyczność cienkiego filmu pianowego, rozmiar i rozkład pęcherzyków gazowych. Właściwości powierzchniowo-aktywne surfaktanta lub biosurfaktanta i ich stopień adsorpcji również modyfikują parametry otrzymywanego cienkiego filmu pianowego. Fizyczny pomiar właściwości reologicznych pian jest również rzeczą skomplikowaną ze względu na ich niestabilną naturę. Z tego powodu tematem tego artykułu jest przegląd i porównanie różnych reologicznych badań dotyczących pian surfaktantowych oraz biosurfaktanowych o różnych, dobrze scharakteryzowanych właściwościach.
Rocznik
Strony
9--27
Opis fizyczny
Bibliogr. 75 poz., il., wz., wykr.
Twórcy
autor
  • J. Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Science
Bibliografia
  • [1] Plateau J.A.F., Statique Experimentale et Theorique des Liquides Soumis aux Seules Forces Moleculaires, Gauthier-Villar, Paris 1873.
  • [2] Weaire D., Hutzler S., The Physics of Foams, Clarendon Press, Oxford 1999.
  • [3] Nguyen A.V., Schulze J., Colloidal Science of Flotation, Marcel Dekker, New York 2004.
  • [4] Exerowa D., Kruglyakov P.M., Foam and Foam Film Theory, experiment, applications, Elsevier, Amsterdam, Holland 1998.
  • [5] Prud’homme R.K., Khan S., ed., Foams: Theory, Measurements and Applications, Marcel Dekker, New York 1996.
  • [6] Princen H.M., Kiss A.D., Rheology of foams and highly concentrated emulsions: III. Static shear modulus, J. Colloid Interf. Sci., 112, 1986, 427.
  • [7] Princen H.M., Kiss A.D., Rheology of foams and highly concentratedemulsions. IV. An experimental study of the shear viscosity and yield stress of concentrated emulasions, J. Colloid Interf. Sci., 128, 1989, 176.
  • [8] Cooper A., Kennedy M.W., Biofoams and natural protein surfactants, Biophys Chem. 151, 2010, 96-104.
  • [9] Rahman P.K.S.M., Gakpe E., Productions, Cherecterisation and Applications of Biosurfactants – review, Biotechnology 7, 2008, 360.
  • [10] Muthusamy K., Gopalakrishnan S., Ravi T.K., Sivachidambaram P., Biosurfactants: Properties, commercial production and application, Current Science, 94, 2008, 736.
  • [11] Weaire D, Hutzler S., Drenckhan W., Saugey A., Cox S.J., The Rheology of Foams, Progr. Colloid Polym. Sci.,133,2006, 100.
  • [12] Hilgenfeldt S.H., Koehler S.A., Stone H.A., Dynamics of coarsening foams: Accelerated and self-limiting drainage, Phys. Rev. Lett. 86, 2001, 4704.
  • [13] Allen Foegeding E., Luck P.J., Davis J.P., Factor determining the physical property of protein foams, Food Hydrocolloids, 20, 2006, 284.
  • [14] Murray B.S., Ettelaie R., Foam stability: proteins and nanoparticles, Curr. Opin. Colloid Interface Sci., 9, 2004, 314.
  • [15] Murray B.S., Rheological propertiesof protein films, Curr. Opin. Colloid Interface Sci, 16, 2011, 27.
  • [16] Yampolskaya G., Platikanov D., Proteins at fluid interfaces: Adsorption layer and thin liquid film, Adv. Colloid Interface Sci., 128–130, 2006, 159.
  • [17] Makievski A.V., Loglio G., Kralgel J., Miller R., Fainerman V.B., Neumann A.W., Adsorption of Protein Layers at the Water/Air Interface As Studied by Axisymmetric Drop and Bubble Shape Analysis, J. Phys. Chem. B 103, 1999, 9557.
  • [18] Fainerman V.B., Lucassen-Reynders E.H., Miller R., Adsorption of surfactants and proteins at fluid interfaces, Colloid Surf. A,143, 1998, 141.
  • [19] Wierenga P.A., Gruppen H., New views on foams from protein solutions, Curr. Opin. Colloid Interface Sci, 15, 2010, 365.
  • [20] Pezennec S., Gauthier F., Alonso C., Graner F., Croguennec T., Brule G., Renault A., The protein net electric charge determines the surface rheological properties of ovalbumin adsorbed at the air–water interface, Food Hydrocolloids, 14, 2000, 463.
  • [21] Niño M.R.R., Sánchez C.C., Fernández M.C., Patino J.M.R., Protein and Lipid Films At Equilibrium At Air-Water Interface, JAOCS, 78, 2001, 873.
  • [22] Caps H., Krzan M., Vandewalle N., High stability of the Bovine Serum Albumine foams evidenced in Hele-Shaw cell, Colloid Surf. A, 2012, in preparation.
  • [23] Caps H., Krzan M., Vandewalle N., 2012, unpublished data.
  • [24] Salam B.A., Pawlak J.J., Vendetti R.A., El-tahlawy K., Synthesis and characterization of starch citrate-chitosan foam with superior water and saline absorbance properties, Biomacromolecules, 14, 2010, 1453-9.
  • [25] Method of producing polysaccharide foams, United States Patent 5840777, 1998.
  • [26] Biodegradable foam, USPTO Patent Application 20070254016, 2007.
  • [27] Lennox S., Gelatin alternatives in gummi confections, Manufacturing Confectioner, 82, 2002, 65.
  • [28] Wei Y.P., Wang C.S., Wu J.S.B., Flow properties of fruit fillings, Food Res. Intern., 34, 2001, 377.
  • [29] Miquelim J.N., Lannes S.C.S., Mezzenga R., Food Hydrocolloids, 24, 2010, 398.
  • [30] Dickinson E., Izgi E., Foam stabilization by protein-polysaccharide complexes, Colloid Surf. A, 113, 1996, 191.
  • [31] Malysa K., Lunkenheimer K., Foams under dynamic conditions, Curr. Opin. Colloid Interface Sci., 13, 2008, 150.
  • [32] Caps H., Vandewalle N., Broze G., Foaming dynamics in Hele-Shaw cells, Phys. Rev. E, 73, 2006, 065301.
  • [33] Caps H., Vandewalle N., Broze G., Zocchi G., Foamability and strucure analysis of foams in Hele-Shaw cell, Appl. Phys. Lett., 90, 2007, 214101.
  • [34] Hanselmanna W., Windhabh E., Flow characteristics and modeling of foam generation in a continous rotor/stator mixer, J. Food Eng., 38, 1999, 393-405.
  • [35] Mleko S., Kristinsson H.G., Liang Y., Gustaw W., Rheological properties of foams generated from egg albumin after pH treatment, LWT 40, 2007, 908.
  • [36] Nastaj M., Wpływ pH na właściwości reologiczne pian uzyskanych z albuminy wysokopiennej, rozdział 3 w „Żywność projektowana”, monografia pod red. Marii Walczyckiej i in., ISBN 978-83-932389-7-2, pp. 33-45.
  • [37] Luck P.J., Bray N., Foegeding E.A., Factors determining yield stress and overrun of whey protein foams, J. Food Sci., 67, 2002, 1667.
  • [38] Davis P.J., Foegeding E.A., Foaming and interfacial properties of polymerized whey protein isolate, J. Food Sci., 69, 2004, 404.
  • [39] Davis P.J., Foegeding E.A., Hansen K., Electrostatic effects on the yield stress of whey protein isolate foams, Colloid. Surf. B, 34, 2004, 13.
  • [40] Nastaj M., Mleko S., The effect of calcium chloride on rheological properties and stability of foams obtained from different whey protein preparates, Milchwissenschaft, in press.
  • [41] Nastaj M., Wpływ karagenu na właściwości reologiczne pian otrzymanych z preparatów białek serwatkowych, http://www.e-wydawnictwo.eu/Document/DocumentPreview/2368, E-wydawnictwo 2012.
  • [42] Saint-Jalmes A., Vera M.U., Durian D.J., Uniform foam production by turbulent mixing: new results on free drainage vs. liquid content, Eur. Phys. J. B 12, 1999, 67.
  • [43] Princen H.M., Rheology of foams and highly concentrated emulsions, I. Elastic properties and yield stress of a cylindrical model system, J. Colloid Interface Sci., 91, 1983, 160.
  • [44] Khan S.A., Armstrong R.C., Rheology of foams: I. Theory of dry foams, Journal of Non-Newtonian Fluid Mechanics, 22, 1986, l.
  • [45] Kraynik A.M., Foam flows, Annu. Rev. Fluid Mech., 20, 1988, 325.
  • [46] Höhler R., Cohen-Addad S., Rheology of liquid foam, J. Phys. Condens. Matter, 17, 2005, R1041.
  • [47] Weaire D., The rheology of foams, Curr. Opin. Colloid Interface Sci., 13, 2008, 171.
  • [48] Cohen-Addad S., Höhler R., Khidas Y., Origin of the slow linear viscoelastic response of aqueous foams, Physical Review letters, 93, 2004, 028302.
  • [49] Marze S.P.L., Saint - Jalmes A., Langevin D., Protein and surfactant foams: linear rheology and dilatancy effect, Colloid Surf. A, 263, 2005, 121.
  • [50] Mal A., Singh S., Deformation of Elastic Solids, Prentice-Hall, London 1991.
  • [51] Poynting J.H., On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening of wires when twisted, Proc. R. Soc. London, Ser. A, 82, 1909, 546.
  • [52] Labiausse V., Höhler R., Cohen-Addad S., Shear induced normal stress differences in aqueous foams, Journal of Rheology, 51, 2007, 479.
  • [53] Marze S., Guillermic R.M., Saint-Jalmes A., Oscillatory rheology of aqueous foams: surfactant, liquid fraction,experimental protocol and aging effects, Soft Matter, 5, 2009, 1937.
  • [54] Cohen-Addad S., Höhler R., Bubble dynamics relaxation in aqueous foam probed by multispeckle Diffusing-Wave Spectroscopy, Physical Review Letters, 86, 2001, 4700.
  • [55] Wenzel H.G., Brungraber R.J., Stelson T.E., The Viscosity of High Expansion Foam, J. Mater., 5, 1970, 396.
  • [56] Gardiner B.S., Dlugogorski B.Z., Jameson G.J, Yield stress measurements of aqueous foams in the dry limit, J. Rheol., 42, 1998, 1437.
  • [57] Pernell C.W., Foegeding E.A., Daubert C.R., Measurement of the yield stress of protein foams by vane rheometry, J. Food Sci., 65, 2000, 110.
  • [58] Cohen-Addad S., Krzan M., Höhler R., Herzhaft B., Rigidity Percolation in Particle-Laden Foams, Phys. Rev. Lett., 99, 2007, 168001-4.
  • [59] Politova N., Tcholakova S., Golemanov K., Denkov N.D., Vethamuthu M., Ananthapadmanabhan K.P., Effect of cationic polymers on foam rheological properties, Langmuir, 28, 2012, 1115.
  • [60] Rouyer F., Cohen-Addad S., Höhler R., Is the yield stress of aqueous foam a welldefined quantity?, Colloid Surf. A, 263, 2005, 111.
  • [61] Barnes H.A., Hutton J.F., Walters K., An Introduction to Rheology, Elsevier, Amsterdam 1989.
  • [62] Khan S.A., Schnepper C.A., Armstrong R.C., Foam Rheology. III. Measurement of shear flow properties, J. Rheol, 32, 1988, 69.
  • [63] Cohen-Addad S., Hoballah H., Höhler R., Viscoelastic response of a coarsening foam, Phys. Rev. Lett., 57, 1998, 6897.
  • [64] Höhler R., Cohen-Addad S., Asnacios A., Rheological memory effect in aqueous foam, Europhys. Lett., 48, 1999, 93.
  • [65] Krishan K., Helal A., Höhler R., Cohen-Addad S., Fast relaxations in foams, Phys. Rev. E, 82, 2010, 011405.
  • [66] Rouyer F., Cohen-Addad S., Vignes-Adler M., Höhler R., Dynamics of yielding observed in a three dimensional aqueous dry foam, Phys Rev. E, 67, 2003, 021405.
  • [67] Labiausse V., Höhler R., Cohen-Addad S., Shear induced normal stress differences in aqueous foams, Mechanics of 21st Century - ICTAM04 Proceedings XXI ICTAM, 15-21 August 2004, Warsaw.
  • [68] Labiausse V., Höhler R., Cohen-Addad S., Shear induced normal stress differences in aqueous foams, J. Rheol., 51, 2007, 479.
  • [69] Ovarlez G., Krishan K., Cohen-Addad S., Investigation of shear banding in foams, Europhysics Lett., 91, 2010, 68005.
  • [70] Saint-Jalmes A., Durian D.J., Vanishing elasticity for wet foams: Equivalence with emulsions and role of polydispersity, J. Rheol., 43, 1999, 1411.
  • [71] Guillermic R.M., Salonen A., Emile J., Saint-Jalmes A., Surfactant Foams Doped with Laponite: Unusual Behaviors Induced by Aging and Confinement, Soft Matter, 5, 2009, 4975.
  • [72] Salonen A., In M., Emile J., Saint-Jalmes A., Solutions of surfactant oligomers: a model system for tuning foam stability by the surfactant structure, Soft Matter, 6, 2010, 2271.
  • [73] Pernell C.W., Foegeding E.A., Luck P.J., Davis J.P., Properties of whey and egg white protein foams, Colloid. Surf. A, 204, 2002, 9-21.
  • [74] Marze S., Langevin D., Saint-Jalmes A., Aqueous foam slip and shear regimes determined by rheometry and multiple light scattering, J. Rheol,. 52, 2008, 1091.
  • [75] Marze S., Guillermic R.M., Saint-Jalmes A., Oscillatory rheology of aqueous foams: surfactant, liquid fraction,experimental protocol and aging effects, Soft Matter, 5, 2009, 1937.
Uwagi
EN
This paper was partially financially supported by Polish National Science Center, contract no. UMO-2011/01/B/ST8/03717.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba4fcec4-de9e-4938-b126-c296ba0ec1f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.