Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The weighting factors method and the response surface methodology are used to achieve multi-objective optimization of a dielectric layer photonic crystal filter. The size of period and the transmission quantity are considered simultaneously and a multi-objective optimization model of filter is established, which takes the size of period and transmission quantity to be minimized in stop-band as objectives. Global approximate expressions of the objective and the constraint functions are found by response surface methodology. Then the weighting factors method is employed to convert the model into a quadratic programming model and the optimal parameters can be obtained using sequence quadratic programming. Examples provide the optimized results in three different weight coefficients. The effect of the weighting factors on the value of the objective function is also discussed. Results show that the present method is precise and efficient for multi-objective optimization of a dielectric layer photonic crystal filter.
Czasopismo
Rocznik
Tom
Strony
29--40
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
- College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
autor
- College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
autor
- College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
Bibliografia
- [1] BEHNAM SAGHIRZADEH DARKI, NOSRAT GRANPAYEH, Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method, Optics Communications 283(20), 2010, pp. 4099–4103.
- [2] THUBTHIMTHONG B., CHOLLET F., Design and simulation of a tunable photonic band gap filter, Microelectronic Engineering 85(5–6), 2008, pp. 1421–1424.
- [3] HONGWEI YANG, SHANSHAN MENG, GAIYE WANG, CUIYING HUANG, The optimization of the dielectric layer photonic crystal filter by the quadratic response surface methodology, Optica Applicata 45(3), 2015, pp. 369–379.
- [4] MIETTINEN K., Nonlinear Multiobjective Optimization, Kluwer Academic Publishers, Boston, 1999.
- [5] ROUX W.J., STANDER N., HAFTKA R.T., Response surface approximations for structural optimization, International Journal for Numerical Methods in Engineering 42(3), 1998, pp. 517–534.
- [6] JANSSON T., NILSSON L., REDHE M., Using surrogate models and response surfaces in structural optimization – with application to crashworthiness design and sheet metal forming, Structural and Multidisciplinary Optimization 25(2), 2003, pp. 129–140.
- [7] REN L.Q., Experimental Optimization Technology, China Machine Press, China, 1987, pp. 147–154.
- [8] YAN DUN-BAO, YUAN NAI-CHANG, FU YUN-QI, Research on dielectric layer PBG structures in waveguide based on FDTD, Journal of Electronics and Information Technology 26(1), 2004, pp. 118–123.
- [9] HUIPING YU, YUNKAN SUI, JING WANG, FENGYI ZHANG, XIAOLIN DAI, Optimal control of oxygen concentration in a magnetic Czochralski crystal growth by response surface methodology, Journal of Materials Science and Technology 22(2), 2006, pp. 173–178.
- [10] SUI Y., YU H., The Improvement of Response Surface Method and the Application of Engineering Optimization, Science Press, China, 2010, pp. 11–32.
- [11] ROBERTO V., Response surface method for high dimensional structural design problems, Ph.D. Dissertation, University of Florida, 2000.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba46d218-c2cc-4621-9b2a-eae939249142
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.