Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research aims to establish robust strength-maturity correlations for concrete produced using various cement binders, along with a comprehensive assessment of the carbon footprint of ready-mix concretes manufactured with each cement type. The study employs two maturity calculation methods: the Time-Temperature Factor (TTF) approach and the weighted maturity method, to evaluate early strength development. Six cement binders were tested, including CEM I 42.5R, CEM V/A (S-V) 32.5R-LH, and various CEM II variants. The heat of hydration for each binder was measured, and the development of mechanical properties was monitored through temperature measurements and compressive strength tests. Additionally, a carbon footprint analysis was conducted to evaluate the environmental impact of the ready-mix concrete in relation to its early strength development. The results confirm significant variations in strength development, with rapid growth observed in concretes containing CEM 42.5 classes, whereas slower strength gain was noted in concretes manufactured with CEM II/B-M (V-LL) 32.5R and CEM V/A 32.5R-LH. At the same time, binders with slower early strength development are characterized by a significantly lower carbon footprint, contributing to the positive environmental impacts of the investigated mixtures produced with low-emission binders. These findings underscore the challenges of balancing the use of low-emission binders with the construction industry's demand for accelerated processes.
Wydawca
Rocznik
Tom
Strony
171--182
Opis fizyczny
Bibliogr. 51 poz., fig., tab.
Twórcy
autor
- Faculty of Civil and Transport Engineering, Poznan University of Technology, Plac Marii Skłodowskiej-Curie 5, 60-965, Poznań, Poland
autor
- Faculty of Civil and Transport Engineering, Poznan University of Technology, Plac Marii Skłodowskiej-Curie 5, 60-965, Poznań, Poland
Bibliografia
- Here is the formatted list of references with full stops at the end of each:
- 1. Saul, A. Principles underlying the steam curing of concrete at atmospheric pressure. Magazine of Concrete Research, 1951, 2, 127–140. https://doi.org/10.1680/macr.1951.2.6.127.
- 2. Carino, N. The maturity method: Theory and application. Cement, Concrete and Aggregates, 1984, 1, 6(2), 61–73.
- 3. Zhang, J., Cusson, D., Monteiro, P., Harvey, J. New perspectives on maturity method and approach for high performance concrete applications. Cement and Concrete Research, 2008, 38(12), 1438–46. https://doi.org/10.1016/j.cemconres.2008.08.001.
- 4. Gawin, D., Pesavento, F., Schrefler, B.A. Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: Hydration and Hygr- Thermal Phenomena. International Journal for Numerical Methods in Engineering, 2006, 67(3), 299–331. https://doi.org/10.1002/nme.1615.
- 5. John, S.T., Sarkar, P., Davis, R. A long-range wide-area network system for monitoring early-age concrete compressive strength. Journal of Construction Engineering and Management, 2023, 149(1). https://doi.org/10.1061/(ASCE)CO.1943-7862.0002425.
- 6. Reinhardt, H.W., Grosse, C.U. Advanced Testing of Cement-Based Materials during Setting and Hardening - Final Report of RILEM TC 185-ATC, 2005.
- 7. Nandhini, K., Karthikeyan, J. The early-age prediction of concrete strength using maturity models: A review. Journal of Building Pathology and Rehabilitation, 2021, 6(1). https://doi.org/10.1007/s41024-020-00102-1.
- 8. Wang, L., Zhou, H., Zhang, J., Wang, Z., Zhang, L., Nehdi, M.L. Prediction of concrete strength considering thermal damage using a modified strength-maturity model. Construction and Building Materials, 2023, 400. https://doi.org/10.1016/j.conbuildmat.2023.132779.
- 9. De Carufel, S., Fahim, A., Ghods, P., Alizadeh, A. Concrete maturity from theory to application. 1st ed., Giatec Scientific Inc., 2018.
- 10. Kim, J.K., Han, S.H., Lee, M. Estimation of compressive strength by a new apparent activation energy function. Cement and Concrete Research, 2021, 31, 217–225. https://doi.org/10.1016/S0008-8846(00)00481-6.
- 11. Sun, B., Noguchi, T., Cai, G., Chen, Q. Prediction of early compressive strength of mortars at different curing temperature and relative humidity by a modified maturity method. Structural Concrete, 2021, 22(S1), E732-E744. https://doi.org/10.1002/suco.202000041.
- 12. Jonasson, J.E., Retelius, A. Application of the maturity concept for assessment of development of compressive strength of concrete. Drogi i Mosty, 2011, 3, 23–37.
- 13. Atasever, M., Tokyay, M. Determining datum temperature and apparent activation energy: An approach for mineral admixtures incorporated cementitious systems. Challenge Journal of Concrete Research Letters, 2024, 15(4), 142–149. https://doi.org/10.20528/cjcrl.2024.04.004.
- 14. de Salles, L.S., Kosar, K., Vandenbossche, J., Khazanovich, L. Determination of concrete strength for concrete pavement opening decision-making. International Journal of Pavement Research and Technology, 2023, 16(4), 1009–1020. https://doi.org/10.1007/s42947-022-00176-9.
- 15. Saremi, S., Goulias, D. Non-destructive testing in concrete maturity modeling and master curve development. Applied Sciences, 2023, 13(13). https://doi.org/10.3390/app13137770.
- 16. Qasrawi, H. The use of NDT to evaluate maturity for taking off formwork under hot curing. Construction and Building Materials, 2023, 400. https://doi.org/10.1016/j.conbuildmat.2023.132437.
- 17. Giménez Fernández, M., Lees, J.M. Symmetric prism characterisation test to infer heat generation and heat conduction properties of concrete. Construction and Building Materials, 2024, 425. https://doi.org/10.1016/j.conbuildmat.2024.135731.
- 18. Kanavaris, F., Soutsos, M., Chen, J.F. Enabling sustainable rapid construction with high volume GGBS concrete through elevated temperature curing and maturity testing. Journal of Building Engineering, 2023, 63. https://doi.org/10.1016/j.jobe.2022.105434.
- 19. Soutsos, M., Kanavaris, F., Hatzitheodorou, A. Critical analysis of strength estimates from maturity functions. Case Studies in Construction Materials, 2018, 9. https://doi.org/10.1016/j.cscm.2018.e00183.
- 20. Kurdowski, W., Pichniarczyk, P. Problems with the Arrhenius equation in the evaluation of concrete maturity. Cement Lime Concrete, 2016, 21/83(3), 149–156.
- 21. Wawrzeńczyk, J., Lech, M. Estimation, based on the maturity function, of the strength of early age concrete cured at elevated temperature. Structure and Environment, 2015, 7(3), 123–131.
- 22. Wawrzeńczyk, J., Kotwa, A. The possibility of estimation of concrete compressive strength based on the maturity function. Cement Lime Concrete, 2013, 18/8(3), 145–149.
- 23. Bajorek, G. Funkcja dojrzałości – narzędzie śledzenia aktualnej wytrzymałości betonu. Budownictwo, Technologie, Architektura, 2016, 4–6, 58–61 (in Polish).
- 24. Bajorek, G., Barć, M. Practical application of maturity function for current estimation of concrete strength in the implemented structure. In: Deja, J., XI Konferencja Dni Betonu. Monografie technologii betonu. Stowarzyszenie Producentów Cementu, 2021, 287–304 (in Polish).
- 25. Bajorek, G., Barć, M. Przykład praktycznego skalowania funkcji dojrzałości betonu. Budownictwo, Technologie, Architektura, 2020, 7–9, 62–65 (in Polish).
- 26. Ranganath, S., McCord, S., Sick, V. Assessing the maturity of alternative construction materials and their potential impact on embodied carbon for single-family homes in the American Midwest. Frontiers in Built Environment, 2024, 10. https://doi.org/10.3389/fbuil.2024.1384191.
- 27. Yu, J., Mishra, D.K., Wu, C., Leung, C.K.Y. Very high volume fly ash green concrete for applications in India. Waste Management and Research, 2018, 36(6), 520–526. https://doi.org/10.1177/0734242X18770241.
- 28. Thorne, J., Bompa, D.V., Funari, M.F., Garcia-Troncoso, N. Environmental Impact Evaluation of Low-Carbon Concrete Incorporating Fly Ash and Limestone. Cleaner Materials, 2024, 12. https://doi.org/10.1016/j.clema.2024.100242.
- 29. Nukah, P.D., Abbey, S.J., Booth, C.A., Oti, J. Evaluation of the structural performance of low carbon concrete. Sustainability, 2022, 14(24). https://doi.org/10.3390/su142416765.
- 30. El-Moussaoui, M., Dhir, R.K., Hewlett, P.C. Concrete strength development and sustainability: The limestone constituent cement effect. Magazine of Concrete Research, 2019, 71(21), 1097–1112. https://doi.org/10.1680/jmacr.19.00033.
- 31. Rahman, M.A., Lu, Y. Ecoblendnet: A physics-informed neural network for optimizing supplementary material replacement to reduce the carbon footprint during cement hydration. Journal of Cleaner Production, 2024, 464. https://doi.org/10.1016/j.jclepro.2024.142777.
- 32. Kanavaris, F., Di Benedetto, G., Campbell, A., Gedge, G., Kaethner, S. Reducing the embodied carbon of concrete-framed buildings through improved design and specification: Influence of building typologies, construction types and concrete mix. Structures, 2024, 67. https://doi.org/10.1016/j.istruc.2024.107005.
- 33. Orozco, C., Babel, S., Tangtermsirikul, S., Sugiyama, T. Comparison of environmental impacts of fly ash and slag as cement replacement materials for mass concrete and the impact of transportation. Sustainable Materials and Technologies, 2024, 39. https://doi.org/10.1016/j.susmat.2023.e00796.
- 34. Francioso, V., Lopez-Arias, M., Moro, C., Jung, N., Velay-Lizancos, M. Impact of curing temperature on the life cycle assessment of sugarcane bagasse ash as a partial replacement of cement in mortars. Sustainability, 2023, 15(1). https://doi.org/10.3390/su15010142.
- 35. EN 196-9:2010 Methods of testing cement - Part 9: Heat of hydration - Semi-adiabatic method.
- 36. ASTM C1074-19e1 Standard Practice for Estimating Concrete Strength by the Maturity Method.
- 37. NEN5790 Determination of strength of fresh concrete with the method of weighted maturity.
- 38. Malhotra, V., Carino, N. Handbook on Nondestructive Testing of Concrete, 2nd Edition, 2003, CRC Press Inc.
- 39. Determination of strength of fresh concrete with the method of weighted maturity. https://www.betonolgunlukmerkezi.com/makale/makale-5.pdf (Accessed: 12.12.2024).
- 40. EN 15804+A2:2020-03 Sustainability of construction works – Environmental product declarations - Core rules for the product category of construction products.
- 41. OneClick LCA. https://oneclicklcaapp.com/main/ (Accessed: 01.12.2024).
- 42. Ghosh, D., Abd-Elssamd, A., Ma, Z.J., Hun, D. Development of high-early-strength fiber-reinforced self-compacting concrete. Construction and Building Materials, 2021, 266, 121051. https://doi.org/10.1016/j.conbuildmat.2020.121051.
- 43. EN 197-1:2012 Cement - Part 1: Composition specifications and conformity criteria for common cements.
- 44. EN 197-5:2021-07 Cement - Part 5: Portland-composite cement CEM II/C-M and Composite cement CEM VI.
- 45. Environmental Product Declaration Type III - EPD ITB No. 236/2023.
- 46. Environmental Product Declaration Type III - EPD ITB No. 238/2023.
- 47. Environmental Product Declaration Type III - EPD ITB No. 418/2023.
- 48. Environmental Product Declaration Type III - EPD ITB No. 239/2023.
- 49. Environmental Product Declaration Type III - EPD ITB No. 420/2023.
- 50. Environmental Product Declaration Type III - EPD ITB No. 427/2023.
- 51. Environmental Product Declaration EPD-EFC-20210198-IBG1-EN.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba434890-862e-49a3-8e14-d4a560d71d00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.