PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The internal dose rate in quartz grains: experimental data and consequences for luminescence dating

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work considers the impact of the internal alpha and beta dose rates in quartz grains obtained from sandy sediments on the results of luminescence dating. The internal dose rates reported here (ca. 0.01–0.21 Gy · ka−1) play a particularly important role, because of low (ca. 0.8–0.9 Gy · ka−1) or very low (ca. 0.4–0.6 Gy · ka−1) external dose rates. In these cases, the internal dose rates form a significant fraction of the total dose rates, often exceeding 10%. Ignoring this contribution would have made the considered luminescence ages artificially older. In our study, we measure both the internal alpha and beta contributions as the latter is usually neglected in the case of quartz. The dose rate measurements were performed using the innovative μDose system.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Strony
9--17
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • Institute of Physics – Centre for Science and Education, Silesian University of Technology Gliwice, Poland
autor
  • Institute of Physics – Centre for Science and Education, Silesian University of Technology Gliwice, Poland
  • Institute of Physics – Centre for Science and Education, Silesian University of Technology Gliwice, Poland
  • Institute of Physics – Centre for Science and Education, Silesian University of Technology Gliwice, Poland
  • Institute of Physics – Centre for Science and Education, Silesian University of Technology Gliwice, Poland
Bibliografia
  • 1. Aitken MJ, 1985. Thermoluminescence Dating. Academic Press, London: 359pp.
  • 2. Aitken MJ, 1998. An Introduction to Optical Dating. Oxford University Press, Oxford.
  • 3. Bøtter-Jensen L and Mejdahl V, 1988. Assessment of beta dose-rate using a GM multicounter system. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 14(1–2): 187–191, DOI 10.1016/1359-0189(88)90062-3.
  • 4. Bell WT, 1979. Attenuation factors for the absorbed radiation dose in quartz inclusions for thermoluminescence dating. Ancient TL 8: 2–13.
  • 5. Beerten K, Verbeeck K, Laloy E, Vanacker V, Vanderberghe D, Christl M, De Grave J and Wouters L, 2020. Electron spin resonance (ESR), optically stimulated luminescence (OSL) and terrestrial cosmogenic radionuclide (TCN) dating of quartz from a Plio-Pleistocene sandy formation in the Campine area, NE Belgium. Quaternary International 556: 144–158. DOI 10.1016/j.quaint.2020.06.011.
  • 6. Brennan BJ, 2003. Beta doses to spherical grains. Radiation Measurements 37(4–5): 299–303, DOI 10.1016/S1350-4487(03)00011-8.
  • 7. Brennan BJ, Lyons R and Phillips SW, 1991. Attenuation of alpha particle track dose for spherical grains. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 18(1–2): 249–253, DOI 10.1016/1359-0189(91)90119-3.
  • 8. Cresswell AJ, Carter J and Sanderson DCW, 2018. Dose rate conversion parameters: assessment of nuclear data. Radiation Measurements 120: 195–201, DOI 10.1016/j.radmeas.2018.02.007.
  • 9. Durcan JA, King GE and Duller GAT, 2015. DRAC: Dose rate and age calculator for trapped charge dating. Quaternary Geochronology 28: 54–61, DOI 10.1016/J.QUAGEO.2015.03.012.
  • 10. Götze J, 2009. Chemistry, textures and physical properties of quartz – geological interpretation and technical application. Mineralogical Magazine 73(4): 645–671, DOI 10.1180/minmag.2009.073.4.645.
  • 11. Guérin G, Mercier N and Adamiec G, 2011. Dose-rate conversion factors: Update. Ancient TL 29: 5–8.
  • 12. Guérin G, Mercier N, Nathan R, Adamiec G and Lefrais Y, 2012. On the use of the infinite matrix assumption and associated concepts: A critical review. Radiation Measurements 47(9): 778–785, DOI 10.1016/J.RADMEAS.2012.04.004.
  • 13. Huot S and Lamothe M, 2012. The implication of sodium-rich plagioclase minerals containing K-rich feldspars aliquots in luminescence dating. Quaternary Geochronology 10: 334–339, DOI 10.1016/j.quageo.2012.03.003.
  • 14. Jacobs Z, 2004. Development of luminescence techniques for dating Middle Stone Age sites in South Africa. Unpublished Ph.D. thesis, University of Wales, Aberystwyth.
  • 15. Jacobs Z, Duller GAT, Wintle A and Henshilwood Ch, 2006. Extending the chronology of deposits at Blombos Cave, South Africa, back to 140 ka using optical dating of single and multiple grains of quartz. Journal of Human Evolution 51: 255–273 DOI 10.1016/j.jhevol.2006.03.007.
  • 16. Kasse C, Vandenberghe D, De Corte F and Van Den Haute P, 2007. Late Weichselian fluvio-aeolian sands and coversands of the type locality Grubbenvorst (southern Netherlands): Sedimentary environments, climate record and age. Journal of Quaternary Science 22(7): 695–708, DOI 10.1002/jqs.1087.
  • 17. Moska P, 2019. Luminescence dating of Quaternary sediments – Some practical aspects. Studia Quaternaria 36: 161–169, DOI 10.24425/sq.2019.126387.
  • 18. Moska P, Jary Z, Sokołowski RJ, Poręba G, Raczyk J, Krawczyk M, Skurzyński J, Zieliński P, Michczyński A, Tudyka K, Adamiec G, Piotrowska N, Pawełczyk F, Łopuch M, Szymak A and Ryzner K, 2020. Chronostratigraphy of Late Glacial aeolian activity in SW Poland – A case study from the Niemodlin Plateau. Geochronometria, DOI 10.2478/geochr-2020-0015.
  • 19. Moska P, Bluszcz A, Poręba G, Tudyka K, Adamiec G, Szymak A and Przybyła A, 2021. Luminescence dating procedures at Gliwice luminescence dating laboratory. Geochronometria, DOI 10.2478/geochr-2021-0001.
  • 20. Neudorf CM, Roberts RG and Jacobs Z, 2012. Sources of over-dispersion in a K-rich feldspar sample from north-central India: insights from De, K content and IRSL age distributions for individual grains. Radiation Measurements 47: 696–702, DOI 10.1016/j.radmeas.2012.04.005.
  • 21. Poręba G, Tudyka K, Walencik-Łata A and Kolarczyk A, 2020. Bias in 238U decay chain members measured by γ-ray spectrometry due to 222Rn leakage. Applied Radiation and Isotopes 156, DOI 10.1016/j.apradiso.2019.108945.
  • 22. Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term variations. Radiation Measurements 23, 497–500, DOI 10.1016/1350-4487(94)90086-8.
  • 23. Rees-Jones J, 1995. Optical dating of young sediments using fine-grain quartz. Ancient TL 13, 9–14.
  • 24. Sanderson DCW, 1988. Thick source beta counting (TSBC): A rapid method for measuring beta dose-rates. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 14(1–2): 203–207, DOI 10.1016/1359-0189(88)90065-9.
  • 25. Smedley RK, Duller GAT, Pearce NJG and Roberts HM, 2012. Determining the K-content of single-grains of feldspar for luminescence dating. Radiation Measurements 47: 790–796, DOI 10.1016/j.radmeas.2012.01.014.
  • 26. Trauerstein M, Lowick SE, Preusser F and Schulunegger F, 2014. Small aliquot and single grain IRSL and post-IR IRSL dating of fluvial and alluvial sediments from the Pativilca valley, Peru. Quaternary Geochronology 22: 163–174, DOI 10.1016/j.quageo.2013.12.004.
  • 27. Tudyka K, Miłosz S, Adamiec G, Bluszcz A, Poręba G, Paszkowski Ł and Kolarczyk A, 2018. μDose: A compact system for environmental radioactivity and dose rate measurement. Radiation Measurement 118: 8–13, DOI 10.1016/J.RADMEAS.2018.07.016.
  • 28. Vandenberghe D, Hossain SM, De Corte F and Van Den Haute P, 2003. Investigations on the origin of the equivalent dose distribution in a Dutch coversand. Radiation Measurements 37: 433–439, DOI 10.1016/S1350-4487(03)00051-9.
  • 29. Vandenberghe D, Kasse C, Hossain SM, De Corte F, Van Den Haute P, Fuchs M and Murray AS, 2004. Exploring the method of optical dating and comparison of optical and 14C ages of Late Weichselian coversands in the southern Netherlands. Journal of Quaternary Science 19(1): 73–86, DOI 10.1002/jqs.806.
  • 30. Vandenberghe D, De Corte F, Buylaert JP, Kucera J and Van Den Haute P, 2008. On the internal radioactivity in quartz. Radiation Measurements 43: 771–775, DOI 10.1016/j.radmeas.2008.01.016.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba422050-4e5e-4d3a-8df0-e583777075b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.