
48 

Applied Computer Science, vol. 16, no. 4, pp. 48–55 

doi:10.23743/acs-2020-28 

Submitted: 2020-10-17 

Revised: 2020-12-02 

Accepted: 2020-12-17 

 

 

architectural paradigm, pattern, module, cloud technology  

 
 

Denis RATOV [0000-0003-4326-3030]* 
 

 

ARCHITECTURAL PARADIGM  

OF THE INTERACTIVE INTERFACE MODULE 

IN THE CLOUD TECHNOLOGY MODEL 
 

 

Abstract  

The article discusses an architectural template for building a module for 

organizing the work of a multiuser windowed information web-system.  

To solve this problem, JavaScript objects have been created: a window 

manager object and a window interactive interface class, which allow a web 

application to function when organizing cloud technologies. The software 

implementation is considered and the results of the practical use of the 

developed module are presented. 

 
 

1.  INTRODUCTION  

 
Today, when developing information systems, cloud technologies are often 

used for remote computing and data processing (Medvedev, 2013). Cloud 

computing refers to the provision of computer resources and capacities to the 
user in the form of Internet services. Cloud computing is a distributed data 

processing process in which computer resources and network capacity are 

provided to the user as an Internet service (Papadopoulos & Katsaros, 2011). 

Cloud technology inherently implements the processes of creating cloud appli-
cations and organizes work with them, without the introduction of additional 

software. Typically, for such applications, functionality is created in a web 

browser environment. Such a software product is a client-server application with 
a Web interface that provides the user with the ability to access data from any 

                                                             
* Volodymyr Dahl East Ukrainian University, Faculty of Information Technology and Electronics, 
Department of Programming and Mathematics, Tsentralnyi Ave, 59A Severodonetsk, Luhansk 
Oblast, Ukraine, 93400, denis831102@gmail.com  
 

http://acs.pollub.pl/pdf/v16n4/4.pdf
http://orcid.org/0000-0003-4326-3030


49 

active point, provided that they are connected to the Internet. Cloud data processing 
or computing is not provided on the clients' personal computers, but on powerful 

server computers. For effective interaction of the client with remote data without 

completely reloading the current page, consider the user interface template, 

which is put into the structure of a module that implements controls, input, 
sending and receiving data in the form of windowed web forms with their 

inherent functionality in the browser context.  

By a web form we mean an independent fragment of the user interface with 
its own logic of behavior, for the display of which the template objects of the 

module being developed are used. One of the purposes of such a module is to 

reuse it. This allows you to define the functionality of objects once and use them 

in different contexts and information systems. 
 When developing the module solves the following problem: you need a reliable 

encapsulated namespace in which you can define the data and functionality of 

objects. This makes it possible to make some of this data available and to limit 
the functionality of others. 

 Today there are web technologies, and libraries and frameworks developed 

on their basis for creating web applications and user interfaces designed  
for information systems to work in browsers. The processes of standardization of 

HTML (HTML 4.01 Specification, n.d.), CSS (Cascading Style Sheets Level 2 

Revision 1 (CSS 2.1) Specification, n.d.) and JavaScript (ECMAScript 

Language Specification – ECMA-262 Edition 5.1, n.d.) languages allowed to 
achieve not only a high degree of cross-platform user interfaces, but also a fairly 

good degree of cross-browser compatibility, so the use of appropriate standards 

when building Web applications has become the dominant approach. 
 When developing modular information systems, standards alone are not 

enough: design patterns, libraries of standard controls, support for presentation 

logic (for example, Presenter in the MVP model (MVP architecture, n.d.)) and 
much more are needed. The corresponding tools are still in their infancy. 

Examples of free products are (MediaWiki, n.d.), Drupal (Drupal – Open Source 

CMS, n.d.), WordPress. The inevitable payback for such systems is the binding 

to server technologies, which limits their application in situations where the 
server environment is fixed for the developer. When considering client libraries 

that do not depend on server technologies, their specialization is visible: on manipu-

lating the DOM model (jQuery (jQuery, n.d.), Zepto.js (Zepto.js: the aerogel-
weight jQuery-compatible JavaScript library, n.d.)), styling pages and controls 

(Bootstrap, n.d.; jQuery UI, n.d.; w2ui (w2ui: Home, n.d.)), building application 

frameworks (AngularJS (AngularJS – Superheroic JavaScript MVW Framework, 

n.d.), Backbone.js (Backbone.js, n.d.), Knockout (Knockout: Home, n.d.)). 
 Despite the rich set among the existing tools, there are tasks that are relevant 

in the development of information systems: the presence of a dispatcher of 

interface models according to a given specification, data integrity control with 
the possibility of multi-user access. 



50 

2.  MODULE ARCHITECTURE 
 
The module being developed consists of two relatively independent, interact-

ing with each other components, which are implemented as JavaScript objects:  
a window manager object and a window interactive interface class. Let's use 

JavaScript's mechanism for accessing objects using the new operator, which is 

used to create objects using the function of our own constructor, thereby creating 
an analogue of the class. Such a constructor stores an instance of the object in the 

closure. This prevents changes to the object outside of the constructor function. 

This uses an object creation template called a “module” and an isolated namespace 

template (Stoyan Stefanov, 2011). In order to change not only the appearance of 
the displayed form components, but also their behavior without modifying the 

main objects of the module, a design principle called the template method was 

applied during development (Gamma, Helm, Johnson & Vlissides, 2001). The 
library code contains a method for setting callback functions where the developer 

needs to supplement the standard data and event handling with his own actions. 

The mechanism of the user interactive interface, in addition to the functions 
of working with interface components, must meet the following requirements: 

1. The web form object must have a method for sending an ajax request to 

the server and be able to process server responses. 

2. Web form object can be either a simple set of fields or contain 
subsections, tabs or tables. 

3. The appearance of web forms must be customizable. 

4. There can be several web forms on the page that can interact with each other. 

 

Fig. 1. Dispatcher object architecture 

The developed window manager (ListWin) is a JavaScript object that: 

1. Stores a collection of generated web forms with their components. 

2. Provides a high-level API for manipulating web forms and data from 
client controls. 

3. Provides interaction of the web form with the DOM model of the web 

document. 
4. Performs preliminary visualization of running processes on forms. 

5. Provides a drag and drop mechanism for controls.  



51 

The ListWin dispatcher implementation consists of its own constructor with 
privat fields and public methods. Figure 1 shows the object architecture of the 

dispatcher. 

The JavaScript object of the windowed interactive interface is responsible for 

the operation of the application, handling the events of the form component and 
includes: 

1. Methods for rendering and manipulating the web form: init(), 

changeCaption(), changeVisible(), setWidth(), WaitLoad(), addObj(). 
2. Web form event trigger constructor: initializationEvent(). 

3. Constructor of event handlers for web form controls: addEvent(). 

 

Let's consider the implementation of the window interface object (Fig. 2). 
The functions of an object are implemented as its public methods. 

 

Fig. 2. Implementing the window interface object 

 

Fig. 3. Module components interaction scheme 



52 

Using an object XHRClass the transport layer of interaction between the 
client and the server is implemented, namely, loading data for web forms from 

the server, saving data to the server, asynchronous AJAX requests to methods of 

php objects on the server. All data transfer takes place in the background without 

reloading the page (Crane & Pascarello, 2006). The JSON format is used to transfer 
structured data between client and server. 

The interaction scheme of the module components is shown in Fig. 3. 

When constructing a separate application module based on the described 
objects of the dispatcher and the interactive window interface, the basic principle 

of creating objects can be a structural-hierarchical relationship. This approach 

allows you to design individual interactive interfaces in the form of application 

modules. 
 At the level of interaction of web-forms with each other, structural approaches 

are no longer effective enough, since only a small number of forms are in fixed 

master-subordinate relationships. Therefore, at this level, a transition was made 
to the network model of the organization (Fig. 3): forms win_1, win_2 are inde-

pendent acting objects that react to the events of their components using callback 

functions assigned during construction by the ListWin dispatcher. 
 

 

3.  MODULE IMPLEMENTATION RESULTS 
 

 Consider this model and an architectural template using the example of imple-

menting the module for creating certificates Modul_Sertifikat (Fig. 4). Using the 
loadFormBaza() method, the object provides manipulations with the DOM model 

of the web document. This uses the createNewForm() constructor of the ListWin 

dispatcher and its addObj() method to add controls with event handlers. 

 

Fig. 4. Certificate creation module 



53 

 After the form is generated, the refreshBaza() method is called (Fig. 5). In it, 
an ajax request is sent to the server to the getSertifikat.php script, to the listFIO 

method of the class, which prepares the necessary data and organizes logic for 

the client side. The prepared information in the JSON object is delivered to the 

client browser, where it is converted to control parameters using an anonymous 
callback function. Form elements are accessed through the collObj collection of 

form objects. 

 

Fig. 5. Form data revision method 

 In Fig. 6 shows the result of generating a certificate base form with filled data. 

The JSON object received from the server was converted into form parameters: 

into a two-level table with a client base and a list of certificates belonging to 
individuals; to the assigned callback functions for the context menu events for 

selecting clients and working with certificates; to general information about the 

number of certificates for a given filter. When the client card editing item is 
selected, a new form with AJAX loading of client data from the server is generated. 

 

Fig. 6. Result of generating a certificate database form with filled data 

  

 



54 

To organize cloud computing and build an information system on the server 
side, the following software was used: 

1. Server operating system – FreeBSD version 11.2. 

2. Apache web server. 

3. Hypertext preprocessor PHP version 7.4. 
4. Database management system – MySQL server version 5.7.31. 

  

To work on the client side of the software modules of an information system 

developed on the basis of JavaScript and Standard ECMA-262, any operating 

system is required that supports a www navigator with a JavaScript interpreter. 
 The practical implementation of the module model with the implementation 

of the dispatcher and the interactive window interface is represented by the 

installation in the form of the medical information system MedSystem being devel-

oped, in which the application modules are implemented in accordance with the 
considered interaction mechanism (Fig. 7). 

 
Fig. 7. Medical information system MedSystem 

 

 

4.  CONCLUSIONS 
 

 The proposed module architecture template for the implementation of the 

dispatcher and the functionality of the user window interface made it possible to 

create the modules of the MedSystem medical information system. The modular 
approach had a positive effect on the responsiveness of the user interface and the 

ability to scale the functionality of the system itself when implementing cloud 

technologies. 



55 

 The results of the use showed that the mechanism of modular creation of  
a dispatcher and a windowed interactive interface of web-forms not only organi-

cally fits into existing technologies for building web applications, but also itself 

has sufficient potential to become the core of cloud technologies for the develop-

ment of multi-user information systems and web services. 

REFERENCES  

AngularJS – Superheroic JavaScript MVW Framework. (n.d.). Retrieved October 15, 2020 from 
http://angularjs.org 

Backbone.js. (n.d.). Retrieved October 15, 2020 from http://backbonejs.org 
Bootstrap. (n.d.). Retrieved October 15, 2020 from http://getbootstrap.com 
Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. (n.d.). Retrieved October 15, 

2020 from https://www.w3.org/TR/CSS22/ 
Crane, D., & Pascarello, E. (2006). Ajax in action. Moscow: Ed. house "Williams". 
Drupal – Open Source CMS. (n.d.). drupal.org. Retrieved October 15, 2020 from https://drupal.org 

ECMAScript Language Specification – ECMA-262 Edition 5.1. (n.d.). Retrieved October 15, 2020 
from http://www.ecma-international.org/ecma-262/5.1 

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (2001). Techniques for Object-Oriented 
Design. Design patterns. SPb.: Peter. 

HTML 4.01 Specification. (n.d.). Retrieved October 15, 2020 from https://www.w3.org/TR/html401 
jQuery. (n.d.). Retrieved October 15, 2020 from http://jquery.com 
jQuery UI. (n.d.). Retrieved October 15, 2020 from http://jqueryui.com 
Knockout: Home. (n.d.). Retrieved October 15, 2020 from http://knockoutjs.com 

MediaWiki. (n.d.). Retrieved October 15, 2020 from http://www.mediawiki.org/wiki/MediaWiki  
Medvedev, A. (2013). Cloud technologies: development trends, examples of execution. Modern 

automation technologies, 2, 6–9. 
MVP architecture. (n.d.). Retrieved October 15, 2020 from http://www.gwtproject.org/articles/mvp-

architecture.html  
Papadopoulos, A., & Katsaros, D. (2011). Distributed Indexing of Multidimensional Data for 

Cloud Computing Environments. Third IEEE Intl Conf. on Cloud Computing Technology 
and Science (pp. 407–414). IEEE. 

Stefanov, S. (2011). Javascript. Patterns. St. Petersburg: publishing house Symbol-Plus. 
w2ui: Home (n.d.) JavaScript UI. Retrieved October 15, 2020 from http://w2ui.com/web 
Zepto.js: the aerogel-weight jQuery-compatible JavaScript library. (n.d.). Retrieved October 15, 

2020 from http://zeptojs.com 
 


