PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Numerical study of effect of trim on performance of 12500DWT cargo ship using RANSE method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the results of studying the effect of trim on the performance of series cargo ship 12500DWT in full scale at two operating conditions by using the RANSE method. The Body Force Propeller method is used to simulate a rotating propeller behind the ship. The numerical predicted results at the ballast condition were verified and validated with sea trial data. The ship’s engine power curves for different trim conditions at two operating conditions were carried out to produce a data source to evaluate the effect of trim on the performance of the 12500DWT cargo ship. The results indicate that if the ship operates under optimum trim conditions, this can decrease the ship’s engine power in a range from 2.5 to 4.5% depending on different loading conditions and ship speeds. Finally, the paper also provides detailed differences in flow around the ship due to trim variation to explain the physical phenomenon of changing ship performance.
Rocznik
Tom
Strony
3--12
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Vietnam Maritime University, Lay Tray, 1800 Hai Phong, Vietnam
  • Vietnam Maritime University, Lay Tray, 1800 Hai Phong, Vietnam
autor
  • Vietnam Maritime University, Lay Tray, 1800 Hai Phong, Vietnam
autor
  • Military Institute of Ship Design, Vietnam
  • Ho Chi Minh City University of Technology (HCMUT), Vietnam
  • Vietnam National University Ho Chi Minh City, Vietnam
autor
  • Ho Chi Minh City University of Technology (HCMUT), Vietnam
  • Vietnam National University Ho Chi Minh City, Vietnam
Bibliografia
  • 1. R. Vettor and C.G. Soares, Development of a ship weather routing system. Ocean Engineering, 2016. 123: pp. 1-14, DOI: 10.1016/j.oceaneng.2016.06.035
  • 2. Z. Ma, H. Chen, and Y. Zhang, Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine. Archives of Thermodynamics, 2017. 38(3): pp. 63-75, DOI: 10.1515/aoter-2017-0016.
  • 3. H. Zeraatgar and M.H. Ghaemi, The analysis of overall ship fuel consumption in acceleration manoeuvre using hull-propeller-engine interaction principles and governor features. Polish Maritime Research, 2019, Vol. 26; pp. 162-173, DOI: 10.2478/pomr-2019-0018.
  • 4. M. Reichel, A. Minchev, and N. Larsen, Trim optimisationtheory and practice. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 2014. 8, DOI 10.12716/1001.08.03.09.
  • 5. S. Bielicki, Prediction of ship motions in irregular waves based on response amplitude operators evaluated experimentally in noise waves. Polish Maritime Research, 2021. Vol. 28; pp. 16-27, DOI: 10.2478/pomr-2021-0002
  • 6. J. Choi et al., Resistance and propulsion characteristics of various commercial ships based on CFD results. Ocean Engineering, 2010. 37(7): pp. 549-566, https://doi.org/10.1016/j.oceaneng.2010.02.007.
  • 7. H. Islam and C.G. Soares, Uncertainty analysis in ship resistance prediction using OpenFOAM. Ocean Engineering, 2019. 191: p. 105805. https://doi.org/10.1016/j.oceaneng.2019.02.033.
  • 8. Y. Zhang et al., Feasibility study of RANS in predicting propeller cavitation in behind-hull conditions. Polish Maritime Research, 2020. DOI: 10.2478/pomr-2020-0063.
  • 9. T.N. Tu et al., Numerical Study on the Influence of Trim on Ship Resistance in Trim Optimization Process. Naval Engineers Journal, 2018. 130(4): pp. 133-142.
  • 10. J. Sun et al., A study on trim optimization for a container ship based on effects due to resistance. Journal of Ship Research, 2016. 60(1): pp. 30-47. https://doi.org/10.5957/jsr.2016.60.1.30.
  • 11. T.-H. Le et al., Numerical investigation on the effect of trim on ship resistance by RANSE method. Applied Ocean Research, 2021. 111: p. 102642. https://doi.org/10.1016/j.apor.2021.102642.
  • 12. P.M. Carrica, A.M. Castro, and F. Stern, Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids. Journal of Marine Science and Technology, 2010. 15(4): pp. 316-330. https://doi.org/10.1007/s00773-010-0098-6.
  • 13. T.N. Tu et al., Numerical prediction of propeller-hull interaction characteristics using RANS method. Polish Maritime Research, 2019, Vol. 26; pp. 163-172, DOI: 10.2478/pomr-2019-0036.
  • 14. Y.N. Win et al., RANS simulation of KVLCC2 using simple body-force propeller model with rudder and without rudder. 􁪥􁮏􂯪􂯧􁾏􁽒􁕤􁏛􀰍􃄽􁩥􃞟, 2016. 23: pp. 1-11. https://doi.org/10.2534/jjasnaoe.23.1
  • 15. M.K. Gokce, O.K. Kinaci, and A.D. Alkan, Self-propulsion estimations for a bulk carrier. Ships and Offshore Structures, 2019. 14(7): pp. 656-663. https://doi.org/10.1080/17445302.2018.1544108
  • 16. Y.N. Win et al., Computation of propeller-hull interaction using simple body-force distribution model around Series 60 CB= 0.6. Journal of the Japan Society of Naval Architects and Ocean Engineers, 2013. 18: pp. 17-27. https://doi.org/10.2534/jjasnaoe.18.17
  • 17. T. Q. Chuan etal. Full-Scale Self-propulsion Computations Using Body Force Propeller Method for Series Cargo Ship 12500DWT. In International Conference on Material, Machines and Methods for Sustainable Development. 2020. Springer. https://doi.org/10.1007/978-3-030-69610-8_113
  • 18. Ship documents of cargo ship 12500DWT. Dongbac Shipbuilding Insdustry Joint Stock Company
  • 19. Result of sea trial „Truong Minh Ocean”_12500. Dongbac Shipbuilding Insdustry Joint Stock Company. 20. ITTC 2014. Recommended procedures and guidelines 7.5-03-02-04. Available from: https://ittc.info/media/4198/75-03-02-04.pdf.
  • 21. T.N. Tu et al., Effects of Turbulence Models on RANSE Computation of Flow Around DTMB 5415 Vessel. Naval Engineers Journal, 2021. 133(3): pp. 137-151.
  • 22. Siemens, 2020. STAR-CCM+ User Guide.
Uwagi
W bibliografii w poz. 14 występuje w części alfabet chiński lub japoński Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba334177-c7fa-43ab-b4cc-2af6e85fe5ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.